Christopher Cullis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070241/publications.pdf

Version: 2024-02-01

		136740	133063
85	3,681	32	59
papers	citations	h-index	g-index
91	91	91	3189
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Ten simple rules to ruin a collaborative environment. PLoS Computational Biology, 2022, 18, e1009957.	1.5	1
2	EMS Derived Wheat Mutant BIG8-1 (Triticum aestivum L.)â€"A New Drought Tolerant Mutant Wheat Line. International Journal of Molecular Sciences, 2021, 22, 5314.	1.8	9
3	The Multipartite Mitochondrial Genome of Marama (Tylosema esculentum). Frontiers in Plant Science, 2021, 12, 787443.	1.7	8
4	Wheat Line "RYNO3936―ls Associated With Delayed Water Stress-Induced Leaf Senescence and Rapid Water-Deficit Stress Recovery. Frontiers in Plant Science, 2020, 11, 1053.	1.7	12
5	Evaluation of the effects of sugarcane processing on the presence of GM DNA and protein in sugar. GM Crops and Food, 2020, 11, 171-183.	2.0	1
6	Plant Vacuolar Processing Enzymes. Frontiers in Plant Science, 2019, 10, 479.	1.7	41
7	Expression of a Small Ubiquitin-Like Modifier Protease Increases Drought Tolerance in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2019, 10, 266.	1.7	29
8	Development of marama bean, an orphan legume, as a crop. Food and Energy Security, 2019, 8, e00164.	2.0	14
9	Origin and Induction of the Flax Genotrophs. Plant Genetics and Genomics: Crops and Models, 2019, , 227-234.	0.3	2
10	Comparison Between the Genomes of a Fiber and an Oil-Seed Variety of Flax. Plant Genetics and Genomics: Crops and Models, 2019, , 89-96.	0.3	1
11	Flax Genome "Edits―in Response to the Growth Environment. Plant Genetics and Genomics: Crops and Models, 2019, , 235-248.	0.3	2
12	Disease Resistance Genes in Flax. Plant Genetics and Genomics: Crops and Models, 2019, , 215-225.	0.3	1
13	DEVELOPING COLLABORATIVE INTERNATIONAL BIOTECHNOLOGY ENTREPRENEURSHIP PROGRAMS. EDULEARN Proceedings, 2019, , .	0.0	O
14	UNDERGRADUATES DEVELOPING RESOURCES FOR LOST CROPS OF AFRICA., 2019, , .		0
15	Orphan Legumes Growing in Dry Environments: Marama Bean as a Case Study. Frontiers in Plant Science, 2018, 9, 1199.	1.7	23
16	The Environment as an Active Generator of Adaptive Genomic Variation. , 2018, , 149-160.		2
17	Unlocking the potential of orphan legumes. Journal of Experimental Botany, 2017, 68, erw437.	2.4	69
18	Enhancing faba bean (Vicia faba L.) genome resources. Journal of Experimental Botany, 2017, 68, 1941-1953.	2.4	37

#	Article	IF	Citations
19	Cysteine proteases and wheat (<scp><i>Triticum aestivum</i></scp> L) under drought: A still greatly unexplored association. Plant, Cell and Environment, 2017, 40, 1679-1690.	2.8	34
20	A novel inversion in the chloroplast genome of marama (Tylosema esculentum). Journal of Experimental Botany, 2017, 68, 2065-2072.	2.4	35
21	Biotechnology Entrepreneurship Graduate Education Based in a Biology Department - Case Western Reserve University. Technology Transfer and Entrepreneurship, 2017, 4, .	0.1	0
22	Agroinfiltration contributes to VP1 recombinant protein degradation. Bioengineered, 2016, 7, 459-477.	1.4	10
23	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	4.7	529
24	Review: The future of cystatin engineering. Plant Science, 2016, 246, 119-127.	1.7	42
25	Potential use of phytocystatins in crop improvement, with a particular focus on legumes. Journal of Experimental Botany, 2015, 66, 3559-3570.	2.4	48
26	Floral-Dip Transformation of Flax (Linum usitatissimum) to Generate Transgenic Progenies with a High Transformation Rate. Journal of Visualized Experiments, 2014, , .	0.2	26
27	The genome of flax (<i>Linum usitatissimum</i>) assembled <i>de novo</i> from short shotgun sequence reads. Plant Journal, 2012, 72, 461-473.	2.8	415
28	Computational prediction of candidate miRNAs and their targets from the completed Linum ussitatissimum genome and EST database. Journal of Nucleic Acids Investigation, 2012, 3, 2.	0.5	3
29	A general model for training the next generation of Biotechnology entrepreneurs based on recent experience of USA-UK-South Africa collaborations. Journal of Commercial Biotechnology, 2012, 18, .	0.2	1
30	Mapping and Tagging of Simply Inherited Traits in Musa. , 2012, , 109-115.		0
31	Linum., 2011, , 177-189.		11
32	Environmentally Induced Heritable Changes in Flax. Journal of Visualized Experiments, 2011, , .	0.2	10
33	Transfer of genetic material between the chloroplast and nucleus: how is it related to stress in plants?. Annals of Botany, 2009, 103, 625-633.	1.4	53
34	DNA markers for variety identification in date palm (<i>Phoenix dactylifera</i> L.). Journal of Horticultural Science and Biotechnology, 2009, 84, 591-594.	0.9	8
35	Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiologia Plantarum, 2007, 129, 766-774.	2.6	60
36	Is photosynthetic transcriptional regulation in Triticum aestivum L. cv. †TugelaDN' a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)?. Plant Cell Reports, 2006, 25, 41-54.	2.8	76

#	Article	IF	Citations
37	A site-specific insertion sequence in flax genotrophs induced by environment. New Phytologist, 2005, 167, 171-180.	3.5	46
38	Mechanisms and Control of Rapid Genomic Changes in Flax. Annals of Botany, 2005, 95, 201-206.	1.4	156
39	Plant Response to Stress: Genome Reorganization in Flax. , 2004, , 984-986.		O
40	Labile DNA sequences in flax identified by combined sample representational difference analysis (csRDA). Plant Molecular Biology, 2003, 52, 527-536.	2.0	17
41	Use of representational difference analysis for the characterization of sequence differences between date palm varieties. Plant Cell Reports, 2002, 21, 271-275.	2.8	12
42	The Use of DNA Polymorphisms in Genetic Mapping. , 2002, 24, 179-189.		14
43	RAPD polymorphisms detected among the flax genotrophs. Plant Molecular Biology, 1999, 41, 795-800.	2.0	25
44	A Biotechnology Experience Resource Center in Northeast Ohio. American Biology Teacher, 1998, 60, 182-184.	0.1	2
45	Messenger RNA from diverse classes of alfalfa leghemoglobin genes show a similar pattern of spatial expression in symbiotic root nodules. Plant and Soil, 1994, 162, 303-307.	1.8	2
46	RAPD analysis in flax: Optimization of yield and reproducibility using klenTaq 1 DNA polymerase, chelex 100, and gel purification of genomic DNA. Plant Molecular Biology Reporter, 1993, 11, 128-141.	1.0	130
47	The flax ribosomal RNA-encoding genes are arranged in tandem at a single locus interspersed by â€~non-rDNA' sequences. Gene, 1992, 120, 151-156.	1.0	9
48	Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene, 1992, 112, 225-228.	1.0	132
49	The Molecular Biology of Plant Cells and Cultures. , 1992, , 19-32.		1
50	Phylogenetic analysis of pines using ribosomal DNA restriction fragment length polymorphisms. Plant Systematics and Evolution, 1992, 179, 141-153.	0.3	36
51	Structure and organization of the 5S rRNA genes (5S DNA) inPinus radiata (Pinaceae). Plant Systematics and Evolution, 1992, 183, 223-234.	0.3	21
52	Intraspecific 5S rRNA gene variation in flax,Linum usitatissimum (Linaceae). Plant Systematics and Evolution, 1992, 183, 265-280.	0.3	10
53	Ribosomal DNA variation among populations of a Pinus rigida Mill. (pitch pine) ecosystem: I. Distribution of copy numbers. Heredity, 1992, 69, 133-140.	1.2	26
54	The ubiquitin-encoding multigene family of flax, Linum usitatissimum. Gene, 1991, 99, 69-75.	1.0	14

#	Article	IF	CITATIONS
55	DNA Rearrangements in Response To Environmental Stress. Advances in Genetics, 1990, , 73-97.	0.8	87
56	Chromosomal and molecular analysis of 5S RNA gene organization in the flax, Linum usitatissimum. Gene, 1989, 83, 75-84.	1.0	41
57	Chloroplast DNA Variability Among Linum Species. American Journal of Botany, 1987, 74, 260.	0.8	17
58	CHLOROPLAST DNA VARIABILITY AMONG LINUM SPECIES. American Journal of Botany, 1987, 74, 260-268.	0.8	32
59	Ribosomal DNA methylation in a flax genotroph and a crown gall tumour. Plant Molecular Biology, 1987, 8, 217-225.	2.0	23
60	The Generation of Somatic and Heritable Variation in Response to Stress. American Naturalist, 1987, 130, S62-S73.	1.0	45
61	Phenotypic consequences of environmentally induced changes in plant DNA. Trends in Genetics, 1986, 2, 307-309.	2.9	55
62	EVALUATING QUANTITATIVE VARIATION IN THE GENOME OF <i>ZEA MAYS</i> . Genetics, 1986, 113, 1009-1019.	1.2	94
63	A rapid procedure for the determination of the copy number of repetitive sequences in eukaryotic genomes. Plant Molecular Biology Reporter, 1984, 2, 24-31.	1.0	27
64	Molecular botany: Plant cells under stress. Nature, 1984, 310, 366-367.	13.7	2
65	Evaluation of genomic variability at the nucleic acid level. Plant Molecular Biology Reporter, 1983, 1, 9-16.	1.0	44
66	The plasticity of the plant genomeâ€"Is it a requirement for success?. Plant Molecular Biology Reporter, 1983, 1, 3-11.	1.0	128
67	Environmentally induced DNA changes in plants. Critical Reviews in Plant Sciences, 1983, 1, 117-131.	2.7	76
68	The chloroplast DNAs of flax genotrophs. Plant Molecular Biology, 1982, 1, 183-189.	2.0	6
69	A simple plant polytene chromosome system, and its use for in situ hybridisation. Plant Molecular Biology, 1982, 1, 301-304.	2.0	12
70	The induction of ribosomal DNA changes in flax. Plant Science Letters, 1981, 20, 213-217.	1.9	49
71	Environmental induction of heritable changes in flax: defined environments inducing changes in rDNA and peroxidase isozyme band pattern. Heredity, 1981, 47, 87-94.	1.2	44
72	Characterisation of the genes for ribosomal RNA in flax. Nucleic Acids Research, 1981, 9, 1301-1310.	6.5	150

#	Article	IF	CITATIONS
73	Organisation of the 5S RNA genes in flax. Nucleic Acids Research, 1981, 9, 5895-5904.	6.5	69
74	Segregation of the isozymes of flax genotrophs. Biochemical Genetics, 1979, 17, 391-401.	0.8	10
75	Quantitative variation of ribosomal RNA genes in flax genotrophs. Heredity, 1979, 42, 237-246.	1.2	59
76	Molecular aspects of the environmental induction of heritable changes in flax. Heredity, 1977, 38, 129-154.	1.2	90
77	Environmentally induced changes in ribosomal RNA cistron number: purported lack of correlation with phenotype—A reply. Heredity, 1977, 39, 177-177.	1.2	0
78	Environmentally induced changes in ribosomal RNA cistron number in flax. Heredity, 1976, 36, 73-79.	1.2	53
79	Chromatin-bound DNA-dependent RNA polymerase in developing pea cotyledons. Planta, 1976, 131, 293-298.	1.6	19
80	Ribosomal RNA cistron number in Nicotiana species and derived haploids. Chromosoma, 1975, 50, 435-441.	1.0	15
81	Variation in the isozymes of flax (Linum usitatissimum) genotrophs. Biochemical Genetics, 1975, 13, 687-697.	0.8	31
82	Ribosomal RNA cistron number in a polyploid series of plants. Chromosoma, 1974, 46, 23-28.	1.0	25
83	Repetitious DNA in some Anemone Species. Chromosoma, 1974, 44, 417.	1.0	39
84	DNA Differences between Flax Genotrophs. Nature, 1973, 243, 515-516.	13.7	67
85	The Structure of Plant Genomes. , 0, , 1-22.		O