Iben Sørensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7070158/publications.pdf

Version: 2024-02-01

218592 265120 4,661 43 26 42 citations g-index h-index papers 49 49 49 6218 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. Plant Cell, 2021, 33, 1472-1491.	3.1	45
2	A tomato LATERAL ORGAN BOUNDARIES transcription factor, <code><i>SILOB1</i></code> , predominantly regulates cell wall and softening components of ripening. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
3	Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. Plant Biotechnology Journal, 2020, 18, 106-118.	4.1	39
4	Callose deposition is essential for the completion of cytokinesis in the unicellular alga, <i>Penium margaritaceum </i> . Journal of Cell Science, 2020, 133, .	1.2	13
5	The Tomato Guanylate-Binding Protein SIGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. Plant Cell, 2020, 32, 3188-3205.	3.1	17
6	Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Current Opinion in Plant Biology, 2020, 55, 11-20.	3.5	126
7	Experimental Manipulation of Pectin Architecture in the Cell Wall of the Unicellular Charophyte, Penium Margaritaceum. Frontiers in Plant Science, 2020, 11, 1032.	1.7	19
8	Endomembrane architecture and dynamics during secretion of the extracellular matrix of the unicellular charophyte, Penium margaritaceum. Journal of Experimental Botany, 2020, 71, 3323-3339.	2.4	9
9	The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell, 2020, 181, 1097-1111.e12.	13.5	153
10	Glycerolâ€3â€phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and <i>Nicotiana benthamiana</i> leaf epidermis. New Phytologist, 2019, 223, 1547-1559.	3.5	17
11	The Secretome and N-Glycosylation Profiles of the Charophycean Green Alga, Penium margaritaceum, Resemble Those of Embryophytes. Proteomes, 2018, 6, 14.	1.7	17
12	Isolation and manipulation of protoplasts from the unicellular green alga Penium margaritaceum. Plant Methods, $2018,14,.$	1.9	8
13	Editorial: Charophytes: Evolutionary Ancestors of Plants and Emerging Models for Plant Research. Frontiers in Plant Science, 2017, 8, 338.	1.7	14
14	Charophytes: Evolutionary Giants and Emerging Model Organisms. Frontiers in Plant Science, 2016, 7, 1470.	1.7	44
15	Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 2015, 3, 10.	1.8	30
16	Dissecting the molecular signatures of apical cellâ€type shoot meristems from two ancient land plant lineages. New Phytologist, 2015, 207, 893-904.	3.5	59
17	Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC Plant Biology, 2015, 15, 56.	1.6	35
18	Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga <i>Penium margaritaceum</i> . Plant Physiology, 2014, 165, 105-118.	2.3	106

#	Article	IF	CITATIONS
19	Stable transformation and reverse genetic analysis of <i><i><i><scp>P</scp>enium margaritaceum</i>: a platform for studies of charophyte green algae, the immediate ancestors of land plants. Plant Journal, 2014, 77, 339-351.</i></i>	2.8	52
20	Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, $\langle i \rangle$ Penium margaritaceum $\langle i \rangle$. Journal of Experimental Botany, 2014, 65, 465-479.	2.4	32
21	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	9.4	867
22	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	9.4	391
23	Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta, 2013, 237, 739-754.	1.6	137
24	The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants. Plant Signaling and Behavior, 2012, 7, 1-3.	1.2	144
25	The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall. PLoS ONE, 2012, 7, e35846.	1.1	68
26	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	6.0	794
27	Screening and Characterization of Plant Cell Walls Using Carbohydrate Microarrays. Methods in Molecular Biology, 2011, 715, 115-121.	0.4	17
28	The charophycean green algae provide insights into the early origins of plant cell walls. Plant Journal, 2011, 68, 201-211.	2.8	226
29	Characterisation of the arabinose-rich carbohydrate composition of immature and mature marama beans (Tylosema esculentum). Phytochemistry, 2011, 72, 1466-1472.	1.4	20
30	How Have Plant Cell Walls Evolved?. Plant Physiology, 2010, 153, 366-372.	2.3	122
31	The Cell Wall Polymers of the Charophycean Green Alga <i>Chara corallina</i> Biochemical Screening. International Journal of Plant Sciences, 2010, 171, 345-361.	0.6	21
32	A Specialized Outer Layer of the Primary Cell Wall Joins Elongating Cotton Fibers into Tissue-Like Bundles Â. Plant Physiology, 2009, 150, 684-699.	2.3	80
33	The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina. Annals of Botany, 2009, 104, 1045-1056.	1.4	54
34	An array of possibilities for pectin. Carbohydrate Research, 2009, 344, 1872-1878.	1.1	25
35	Highâ€throughput screening of <i>Erwinia chrysanthemi</i> pectin methylesterase variants using carbohydrate microarrays. Proteomics, 2009, 9, 1861-1868.	1.3	13
36	Mixedâ€linkage (1→3),(1→4)â€Î² <scp>â€dâ€</scp> glucan is not unique to the Poales and is an abundant com <i>Equisetum arvense</i> cell walls. Plant Journal, 2008, 54, 510-521.	ponent of	151

#	Article	IF	CITATIONS
37	Bio-prospecting across the plant kingdom for industrially relevant cell wall polysaccharides using novel glycan microarrays. Journal of Biotechnology, 2008, 136, S199.	1.9	O
38	Bio-prospecting for novel polysaccharides in microalgae using novel glycan microarrays. Journal of Biotechnology, 2008, 136, S199.	1.9	1
39	Functional Analysis of the Cellulose Synthase-Like Genes <i>CSLD1</i> , <i>CSLD2</i> , and <i>CSLD4</i> in Tip-Growing Arabidopsis Cells. Plant Physiology, 2008, 148, 1238-1253.	2.3	142
40	Plant cell walls: New insights from ancient species. Plant Signaling and Behavior, 2008, 3, 743-745.	1.2	4
41	Functional Genomic Analysis Supports Conservation of Function Among Cellulose Synthase-Like A Gene Family Members and Suggests Diverse Roles of Mannans in Plants. Plant Physiology, 2007, 143, 1881-1893.	2.3	201
42	High-throughput microarray analysis of pectic polymers by enzymatic epitope deletion. Carbohydrate Polymers, 2007, 70, 77-81.	5.1	13
43	High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant Journal, 2007, 50, 1118-1128.	2.8	286