Carolina Cueva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7069802/publications.pdf

Version: 2024-02-01

43 papers 2,494 citations

201674 27 h-index 42 g-index

44 all docs

44 docs citations

times ranked

44

3924 citing authors

#	Article	IF	CITATIONS
1	Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria. Food Chemistry, 2022, 368, 130871.	8.2	15
2	Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. Journal of Functional Foods, 2022, 91, 105016.	3.4	8
3	Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Research International, 2022, 155, 111010.	6.2	20
4	A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food and Function, 2021, 12, 4152-4164.	4.6	11
5	In Vitro Colonic Fermentation of Saponin-Rich Extracts from Quinoa, Lentil, and Fenugreek. Effect on Sapogenins Yield and Human Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 106-116.	5.2	32
6	Application of the dynamic gastrointestinal simulator (simgi \hat{A}^{e}) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Research International, 2020, 129, 108790.	6.2	28
7	Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines, 2020, 8, 375.	3.2	15
8	Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients, 2020, 12, 625.	4.1	60
9	Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 2020, 8, 132.	3.6	83
10	<i>Saccharomyces cerevisiae</i> and <i> Hanseniaspora osmophila strains as</i> yeast active cultures for potential probiotic applications. Food and Function, 2019, 10, 4924-4931.	4.6	20
11	Antioxidant and antimicrobial assessment of licorice supercritical extracts. Industrial Crops and Products, 2019, 139, 111496.	5.2	24
12	Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi \hat{A}^{\otimes}). Impact on human gut microbiota. Food and Chemical Toxicology, 2019, 132, 110657.	3.6	41
13	Physical effects of dietary fibre on simulated luminal flow, studied by i>in vitro / i>dynamic gastrointestinal digestion and fermentation. Food and Function, 2019, 10, 3452-3465.	4.6	29
14	Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi \hat{A}^{e}). Carbohydrate Polymers, 2019, 207, 382-390.	10.2	79
15	Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. Innovative Food Science and Emerging Technologies, 2019, 51, 64-72.	5.6	23
16	Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis, 2018, 68, 41-52.	3.9	68
17	Influence of viscosity on the growth of human gut microbiota. Food Hydrocolloids, 2018, 77, 163-167.	10.7	31
18	Dynamic gastric digestion of a commercial whey protein concentrateâ€. Journal of the Science of Food and Agriculture, 2018, 98, 1873-1879.	3.5	36

#	Article	IF	CITATIONS
19	Understanding the impact of chia seed mucilage on human gut microbiota by using the dynamic gastrointestinal model simgi $\hat{A}^{@}$. Journal of Functional Foods, 2018, 50, 104-111.	3.4	45
20	Chemical characterization and <i>in vitro</i> colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, 2017, 97, 3433-3444.	3.5	35
21	Reciprocal beneficial effects between wine polyphenols and probiotics: an exploratory study. European Food Research and Technology, 2017, 243, 531-538.	3.3	30
22	An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules, 2017, 22, 99.	3.8	107
23	Proanthocyanidin Characterization and Bioactivity of Extracts from Different Parts of Uncaria tomentosa L. (Cat's Claw). Antioxidants, 2017, 6, 12.	5.1	29
24	Some Contributions to the Study of Oenological Lactic Acid Bacteria through Their Interaction with Polyphenols. Beverages, 2016, 2, 27.	2.8	3
25	Interactions Between Wine Polyphenols and Gut Microbiota., 2016,, 259-278.		7
26	Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches. Antioxidants, 2015, 4, 1-21.	5.1	80
27	A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Research International, 2015, 2015, 1-15.	1.9	288
28	Susceptibility and Tolerance of Human Gut Culturable Aerobic Microbiota to Wine Polyphenols. Microbial Drug Resistance, 2015, 21, 17-24.	2.0	6
29	Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors. Food Chemistry, 2015, 187, 112-119.	8.2	47
30	Application of a new Dynamic Gastrointestinal Simulator (SIMGI) to study the impact of red wine in colonic metabolism. Food Research International, 2015, 72, 149-159.	6.2	54
31	Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT - Food Science and Technology, 2015, 61, 283-289.	5.2	85
32	The Computer-Controlled Multicompartmental Dynamic Model of the Gastrointestinal System SIMGI. , 2015, , 319-327.		16
33	Evaluation of SPE as Preparative Technique for the Analysis of Phenolic Metabolites in Human Feces. Food Analytical Methods, 2014, 7, 844-853.	2.6	11
34	<i>In vitro</i> fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiology Ecology, 2013, 83, 792-805.	2.7	163
35	In Vitro Fermentation of a Red Wine Extract by Human Gut Microbiota: Changes in Microbial Groups and Formation of Phenolic Metabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 2136-2147.	5. 2	157
36	Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Letters in Applied Microbiology, 2012, 54, 557-563.	2.2	68

#	Article	IF	Citations
37	Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. Food Control, 2012, 28, 212-219.	5.5	41
38	Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targetted analysis of precursor compounds, intermediate metabolites and end-products. Food Chemistry, 2012, 131, 337-347.	8.2	72
39	Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. Journal of Applied Microbiology, 2012, 112, 672-682.	3.1	35
40	Synthesis, Analytical Features, and Biological Relevance of 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone, a Microbial Metabolite Derived from the Catabolism of Dietary Flavan-3-ols. Journal of Agricultural and Food Chemistry, 2011, 59, 7083-7091.	5.2	43
41	Antibiosis of vineyard ecosystem fungi against food-borne microorganisms. Research in Microbiology, 2011, 162, 1043-1051.	2.1	14
42	Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 2010, 161, 372-382.	2.1	389
43	Inactivation of oenological lactic acid bacteria (<i>Lactobacillus hilgardii</i> and <i>Pediococcus) Tj ETQq1 1 0.78</i>	34314 rgB7 3.1	√/gyerlock 1