Carolina Cueva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7069802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 2010, 161, 372-382.	2.1	389
2	A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Research International, 2015, 2015, 1-15.	1.9	288
3	<i>In vitro</i> fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiology Ecology, 2013, 83, 792-805.	2.7	163
4	In Vitro Fermentation of a Red Wine Extract by Human Gut Microbiota: Changes in Microbial Groups and Formation of Phenolic Metabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 2136-2147.	5.2	157
5	An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules, 2017, 22, 99.	3.8	107
6	Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT - Food Science and Technology, 2015, 61, 283-289.	5.2	85
7	Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 2020, 8, 132.	3.6	83
8	Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches. Antioxidants, 2015, 4, 1-21.	5.1	80
9	Behaviour of citrus pectin during its gastrointestinal digestion and fermentation in a dynamic simulator (simgi®). Carbohydrate Polymers, 2019, 207, 382-390.	10.2	79
10	Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targetted analysis of precursor compounds, intermediate metabolites and end-products. Food Chemistry, 2012, 131, 337-347.	8.2	72
11	Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Letters in Applied Microbiology, 2012, 54, 557-563.	2.2	68
12	Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis, 2018, 68, 41-52.	3.9	68
13	Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients, 2020, 12, 625.	4.1	60
14	Application of a new Dynamic Gastrointestinal Simulator (SIMGI) to study the impact of red wine in colonic metabolism. Food Research International, 2015, 72, 149-159.	6.2	54
15	Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors. Food Chemistry, 2015, 187, 112-119.	8.2	47
16	Understanding the impact of chia seed mucilage on human gut microbiota by using the dynamic gastrointestinal model simgi®. Journal of Functional Foods, 2018, 50, 104-111.	3.4	45
17	Inactivation of oenological lactic acid bacteria (<i>Lactobacillus hilgardii</i> and <i>Pediococcus) Tj ETQq1 1 0.78</i>	4314 rgBT 3.1	Qyerlock
18	Synthesis, Analytical Features, and Biological Relevance of 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone, a Microbial Metabolite Derived from the Catabolism of Dietary Flavan-3-ols. Journal of Agricultural and Food Chemistry, 2011, 59, 7083-7091.	5.2	43

CAROLINA CUEVA

#	Article	IF	CITATIONS
19	Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. Food Control, 2012, 28, 212-219.	5.5	41
20	Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota. Food and Chemical Toxicology, 2019, 132, 110657.	3.6	41
21	Dynamic gastric digestion of a commercial whey protein concentrateâ€. Journal of the Science of Food and Agriculture, 2018, 98, 1873-1879.	3.5	36
22	Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. Journal of Applied Microbiology, 2012, 112, 672-682.	3.1	35
23	Chemical characterization and <i>in vitro</i> colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, 2017, 97, 3433-3444.	3.5	35
24	In Vitro Colonic Fermentation of Saponin-Rich Extracts from Quinoa, Lentil, and Fenugreek. Effect on Sapogenins Yield and Human Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 106-116.	5.2	32
25	Influence of viscosity on the growth of human gut microbiota. Food Hydrocolloids, 2018, 77, 163-167.	10.7	31
26	Reciprocal beneficial effects between wine polyphenols and probiotics: an exploratory study. European Food Research and Technology, 2017, 243, 531-538.	3.3	30
27	Proanthocyanidin Characterization and Bioactivity of Extracts from Different Parts of Uncaria tomentosa L. (Cat's Claw). Antioxidants, 2017, 6, 12.	5.1	29
28	Physical effects of dietary fibre on simulated luminal flow, studied by <i>in vitro</i> dynamic gastrointestinal digestion and fermentation. Food and Function, 2019, 10, 3452-3465.	4.6	29
29	Application of the dynamic gastrointestinal simulator (simgi®) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Research International, 2020, 129, 108790.	6.2	28
30	Antioxidant and antimicrobial assessment of licorice supercritical extracts. Industrial Crops and Products, 2019, 139, 111496.	5.2	24
31	Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. Innovative Food Science and Emerging Technologies, 2019, 51, 64-72.	5.6	23
32	<i>Saccharomyces cerevisiae</i> and <i>Hanseniaspora osmophila strains as</i> yeast active cultures for potential probiotic applications. Food and Function, 2019, 10, 4924-4931.	4.6	20
33	Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Research International, 2022, 155, 111010.	6.2	20
34	The Computer-Controlled Multicompartmental Dynamic Model of the Gastrointestinal System SIMGI. , 2015, , 319-327.		16
35	Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines, 2020, 8, 375.	3.2	15
36	Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria. Food Chemistry, 2022, 368, 130871.	8.2	15

CAROLINA CUEVA

#	Article	IF	CITATIONS
37	Antibiosis of vineyard ecosystem fungi against food-borne microorganisms. Research in Microbiology, 2011, 162, 1043-1051.	2.1	14
38	Evaluation of SPE as Preparative Technique for the Analysis of Phenolic Metabolites in Human Feces. Food Analytical Methods, 2014, 7, 844-853.	2.6	11
39	A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food and Function, 2021, 12, 4152-4164.	4.6	11
40	Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. Journal of Functional Foods, 2022, 91, 105016.	3.4	8
41	Interactions Between Wine Polyphenols and Gut Microbiota. , 2016, , 259-278.		7
42	Susceptibility and Tolerance of Human Gut Culturable Aerobic Microbiota to Wine Polyphenols. Microbial Drug Resistance, 2015, 21, 17-24.	2.0	6
43	Some Contributions to the Study of Oenological Lactic Acid Bacteria through Their Interaction with Polyphenols. Beverages, 2016, 2, 27.	2.8	3