Thomas R Fuerst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7069366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6946-E6954.	7.1	86
2	Structural Basis for Penetration of the Glycan Shield of Hepatitis C Virus E2 Glycoprotein by a Broadly Neutralizing Human Antibody. Journal of Biological Chemistry, 2015, 290, 10117-10125.	3.4	69
3	Affinity maturation of a broadly neutralizing human monoclonal antibody that prevents acute hepatitis C virus infection in mice. Hepatology, 2016, 64, 1922-1933.	7.3	60
4	Antigenicity and Immunogenicity of Differentially Glycosylated Hepatitis C Virus E2 Envelope Proteins Expressed in Mammalian and Insect Cells. Journal of Virology, 2019, 93, .	3.4	51
5	Molecular-Level Interactions of Polyphosphazene Immunoadjuvants and Their Potential Role in Antigen Presentation and Cell Stimulation. Biomacromolecules, 2016, 17, 3732-3742.	5.4	43
6	Designing a B Cell-Based Vaccine against a Highly Variable Hepatitis C Virus. Frontiers in Microbiology, 2017, 8, 2692.	3.5	43
7	Biodegradable "Smart―Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles. Biomacromolecules, 2017, 18, 2000-2011.	5.4	41
8	Hydrolytically Degradable PEGylated Polyelectrolyte Nanocomplexes for Protein Delivery. Biomacromolecules, 2018, 19, 3467-3478.	5.4	29
9	Structural basis for broad neutralization of ebolavirusesÂby an antibody targeting the glycoprotein fusion loop. Nature Communications, 2018, 9, 3934.	12.8	25
10	Supramolecular Assembly of Toll-like Receptor 7/8 Agonist into Multimeric Water-Soluble Constructs Enables Superior Immune Stimulation <i>In Vitro</i> and <i>In Vivo</i> . ACS Applied Bio Materials, 2020, 3, 3187-3195.	4.6	23
11	Self-assembly of polyphosphazene immunoadjuvant with poly(ethylene oxide) enables advanced nanoscale delivery modalities and regulated pH-dependent cellular membrane activity. Heliyon, 2016, 2, e00102.	3.2	20
12	An Antigenically Diverse, Representative Panel of Envelope Glycoproteins for Hepatitis C Virus Vaccine Development. Gastroenterology, 2022, 162, 562-574.	1.3	20
13	Design of a native-like secreted form of the hepatitis C virus E1E2 heterodimer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
14	Structure-Based Design of Hepatitis C Virus E2 Glycoprotein Improves Serum Binding and Cross-Neutralization. Journal of Virology, 2020, 94, .	3.4	17
15	<i>In Vivo</i> and <i>In Vitro</i> Potency of Polyphosphazene Immunoadjuvants with Hepatitis C Virus Antigen and the Role of Their Supramolecular Assembly. Molecular Pharmaceutics, 2021, 18, 726-734.	4.6	16
16	Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels. Materials Science and Engineering C, 2020, 106, 110179.	7.3	15
17	Engineering subtilisin proteases that specifically degrade active RAS. Communications Biology, 2021, 4, 299.	4.4	10
18	Intracellular Delivery of Active Proteins by Polyphosphazene Polymers. Pharmaceutics, 2021, 13, 249.	4.5	9

THOMAS R FUERST

#	Article	IF	CITATIONS
19	Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses, 2021, 13, 981.	3.3	7
20	Induction of broadly neutralizing antibodies using a secreted form of the hepatitis C virus E1E2 heterodimer as a vaccine candidate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112008119.	7.1	7
21	Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses, 2021, 13, 1027.	3.3	5
22	In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. Antiviral Research, 2019, 162, 136-141.	4.1	4
23	Crystal Structure of a Bivalent Antibody Fab Fragment. Journal of Molecular Biology, 2021, 433, 166714.	4.2	2