Vladimir A Mironov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7069152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What can biofabrication do for space and what can space do for biofabrication?. Trends in Biotechnology, 2022, 40, 398-411.	4.9	23
2	Extracellular Matrix Determines Biomechanical Properties of Chondrospheres during Their Maturation <i>In Vitro</i> . Cartilage, 2020, 11, 521-531.	1.4	26
3	Magnetic levitational bioassembly of 3D tissue construct in space. Science Advances, 2020, 6, eaba4174.	4.7	77
4	Scaffold-free and label-free biofabrication technology using levitational assembly in a high magnetic field. Biofabrication, 2020, 12, 045022.	3.7	16
5	The bioprinting roadmap. Biofabrication, 2020, 12, 022002.	3.7	291
6	Scaffold-free, Label-free, and Nozzle-free Magnetic Levitational Bioassembler for Rapid Formative Biofabrication of 3D Tissues and Organs. International Journal of Bioprinting, 2020, 6, 304.	1.7	12
7	The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies. Trends in Biotechnology, 2018, 36, 348-357.	4.9	231
8	Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly. Biofabrication, 2018, 10, 034104.	3.7	72
9	The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds. Journal of Tissue Engineering, 2014, 5, 204173141455656.	2.3	32
10	Organ printing: from bioprinter to organ biofabrication line. Current Opinion in Biotechnology, 2011, 22, 667-673.	3.3	291
11	Study of Double-Layered Microcapsule Formation in Compound Nozzle Jetting. , 2010, , .		Ο
12	Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30, 2164-2174.	5.7	1,106
13	Emergence of clinical vascular tissue engineering. Lancet, The, 2009, 373, 1402-1404.	6.3	12
14	VEGF-mediated fusion in the generation of uniluminal vascular spheroids. Developmental Dynamics, 2008, 237, spc1-spc1.	0.8	0
15	Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends in Biotechnology, 2008, 26, 338-344.	4.9	129
16	Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting. Expert Opinion on Biological Therapy, 2008, 8, 143-152.	1.4	20
17	Organ printing: promises and challenges. Regenerative Medicine, 2008, 3, 93-103.	0.8	222
18	Blood Vesselâ€Like Tissue Spheroids as Modules for the Assembly of Blood Vessels. FASEB Journal, 2008, 22, 580.5.	0.2	0

Vladimir A Mironov

#	Article	IF	CITATIONS
19	Editorial Board Focus – February 2007. Expert Opinion on Biological Therapy, 2007, 7, 157-160.	1.4	Ο
20	Bioprinting living structures. Journal of Materials Chemistry, 2007, 17, 2054.	6.7	114
21	Review: Bioprinting: A Beginning. Tissue Engineering, 2006, 12, 631-634.	4.9	286
22	Research Project: Charleston Bioengineered Kidney Project. Biotechnology Journal, 2006, 1, 903-905.	1.8	17
23	Toward Human Organ Printing: Charleston Bioprinting Symposium. ASAIO Journal, 2006, 52, e27-e30.	0.9	16
24	American Association of Anatomists meeting on regenerative medicine. Expert Opinion on Biological Therapy, 2006, 6, 727-730.	1.4	0
25	Cell aggregates as selfâ€assembling bioink. FASEB Journal, 2006, 20, A436.	0.2	1
26	Cardiovascular Tissue Engineering I. Perfusion Bioreactors: A Review. Journal of Long-Term Effects of Medical Implants, 2006, 16, 111-130.	0.2	17
27	Engineering Blood Vessels from Lumenized Vascular Tissue Spheroids. FASEB Journal, 2006, 20, A436.	0.2	Ο
28	Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronanâ€gelatin hydrogel. FASEB Journal, 2006, 20, A436.	0.2	1
29	Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials, 2005, 26, 7628-7635.	5.7	88
30	On the Role of Shear Stress in Cardiogenesis. Endothelium: Journal of Endothelial Cell Research, 2005, 12, 259-261.	1.7	11
31	The Second International Workshop on Bioprinting, Biopatterning and Bioassembly. Expert Opinion on Biological Therapy, 2005, 5, 1111-1115.	1.4	18
32	Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21, 157-161.	4.9	1,127
33	Perfusion Bioreactor for Vascular Tissue Engineering with Capacities for Longitudinal Stretch. Journal of Craniofacial Surgery, 2003, 14, 340-347.	0.3	49
34	Regaining chondrocyte phenotype in thermosensitive gel culture. The Anatomical Record, 2001, 263, 336-341.	2.3	42
35	Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: A role for transforming growth factor 1²3. , 1997, 209, 296-309.		124
36	Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial		6