Qian Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7069087/qian-wang-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11,658 258 51 101 h-index g-index citations papers 6.8 6.82 273 13,457 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
258	Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. <i>Energy and Environmental Science</i> , 2016 , 9, 729-762	35.4	876
257	Penta-graphene: A new carbon allotrope. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2372-7	11.5	763
256	Ferromagnetism in semihydrogenated graphene sheet. <i>Nano Letters</i> , 2009 , 9, 3867-70	11.5	686
255	Clustering of Ti on a C60 surface and its effect on hydrogen storage. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14582-3	16.4	606
254	First-principles study of hydrogen storage on Li12C60. <i>Journal of the American Chemical Society</i> , 2006 , 128, 9741-5	16.4	474
253	Vacancy-induced magnetism in ZnO thin films and nanowires. <i>Physical Review B</i> , 2008 , 77,	3.3	381
252	Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI2Br Solar Cells. <i>ACS Energy Letters</i> , 2018 , 3, 970-978	20.1	285
251	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for High-Performance Potassium-Ion Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1800171	21.8	272
250	3D I D D D Interface Profiling for Record Efficiency All-Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability. <i>Advanced Energy Materials</i> , 2018 , 8, 1703246	21.8	256
249	Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. <i>Physical Review B</i> , 2010 , 81,	3.3	247
248	Electric field enhanced hydrogen storage on polarizable materials substrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2801-6	11.5	194
247	Potential of AlN nanostructures as hydrogen storage materials. ACS Nano, 2009, 3, 621-6	16.7	183
246	Thermoelectric properties of single-layered SnSe sheet. <i>Nanoscale</i> , 2015 , 7, 15962-70	7.7	181
245	Electronic structures and bonding of graphyne sheet and its BN analog. <i>Journal of Chemical Physics</i> , 2011 , 134, 174701	3.9	163
244	Functionalized Graphitic Carbon Nitride for Efficient Energy Storage. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 6055-6059	3.8	131
243	Beyond Graphitic Carbon Nitride: Nitrogen-Rich Penta-CN2 Sheet. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3993-3998	3.8	125
242	Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes. <i>Journal of Chemical Theory and Computation</i> , 2009 , 5, 374-9	6.4	115

241	Three-dimensional metallic boron nitride. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18216-2	116.4	113
240	EGraphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3234-3241	6.4	109
239	Carrier-mediated ferromagnetism in N codoped (Zn,Mn)O (101D) thin films. <i>Physical Review B</i> , 2004 , 70,	3.3	109
238	TiC2: a new two-dimensional sheet beyond MXenes. <i>Nanoscale</i> , 2016 , 8, 233-42	7.7	107
237	Stable three-dimensional metallic carbon with interlocking hexagons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 18809-13	11.5	100
236	Storage of molecular hydrogen in B-N cage: energetics and thermal stability. <i>Nano Letters</i> , 2005 , 5, 127	3171.5	96
235	Ferromagnetism in Mn-doped GaN nanowires. <i>Physical Review Letters</i> , 2005 , 95, 167202	7.4	89
234	Boron-Doped Graphene as a Promising Anode Material for Potassium-Ion Batteries with a Large Capacity, High Rate Performance, and Good Cycling Stability. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 24418-24424	3.8	86
233	Stabilization of Si60 cage structure. <i>Physical Review Letters</i> , 2003 , 90, 135503	7.4	83
232	Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14191-7	3.6	83
231	Functionalized heterofullerenes for hydrogen storage. <i>Applied Physics Letters</i> , 2009 , 94, 013111	3.4	82
230	Structural Stabilities and Electronic Properties of High-Angle Grain Boundaries in Perovskite Cesium Lead Halides. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1715-1722	3.8	80
229	Modulating the phases of iron carbide nanoparticles: from a perspective of interfering with the carbon penetration of Fe@FeO by selectively adsorbed halide ions. <i>Chemical Science</i> , 2017 , 8, 473-481	9.4	80
228	Synergistic Effect of Co-Ni Hybrid Phosphide Nanocages for Ultrahigh Capacity Fast Energy Storage. <i>Advanced Science</i> , 2019 , 6, 1802005	13.6	80
227	Magnetic properties of transition-metal-doped Zn1NTxO (T=Cr, Mn, Fe, Co, and Ni) thin films with and without intrinsic defects: A density functional study. <i>Physical Review B</i> , 2009 , 79,	3.3	79
226	Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. <i>Physical Review B</i> , 2011 , 84,	3.3	77
225	Lattice thermal conductivity of penta-graphene. <i>Carbon</i> , 2016 , 105, 424-429	10.4	77
224	Iodine-Optimized Interface for Inorganic CsPbIBr Perovskite Solar Cell to Attain High Stabilized Efficiency Exceeding 14. <i>Advanced Science</i> , 2018 , 5, 1801123	13.6	76

223	Manganese-based magnetic superhalogens. Angewandte Chemie - International Edition, 2011, 50, 2568-	72 6.4	74
222	Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage. <i>Energy and Environmental Science</i> , 2018 , 11, 3033-3042	35.4	67
221	Fabrication of Hollow CoP/TiO Heterostructures for Enhanced Oxygen Evolution Reaction. <i>Small</i> , 2020 , 16, e1905075	11	67
220	Dendrite-Free Lithium Deposition via a Superfilling Mechanism for High-Performance Li-Metal Batteries. <i>Advanced Materials</i> , 2019 , 31, e1903248	24	66
219	A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties. <i>Scientific Reports</i> , 2015 , 5, 14342	4.9	62
218	First-principles calculations of metal stabilized Si20 cages. <i>Physical Review B</i> , 2002 , 65,	3.3	62
217	A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material. <i>Nano Energy</i> , 2017 , 38, 263-270	17.1	60
216	Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. <i>Physical Review B</i> , 2012 , 85,	3.3	59
215	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. <i>Nano Research</i> , 2019 , 12, 2218-2223	10	59
214	Stability and physical properties of a tri-ring based porous g-C4N3 sheet. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7142-6	3.6	58
213	Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO. <i>Applied Physics Letters</i> , 2005 , 87, 162509	3.4	56
212	Stable Li metal anode with protected interface for high-performance Li metal batteries. <i>Energy Storage Materials</i> , 2018 , 15, 249-256	19.4	55
211	Octa-coordinated alkaline earth metal-dinitrogen complexes M(N) (M=Ca, Sr, Ba). <i>Nature Communications</i> , 2019 , 10, 3375	17.4	55
210	Magnetism and energetics of Mn-Doped ZnO (101🗅) thin films. <i>Physical Review B</i> , 2004 , 69,	3.3	55
209	Antiferromagnetic coupling driven by bond length contraction near the Ga1-xMnxN film surface. <i>Physical Review Letters</i> , 2004 , 93, 155501	7.4	54
208	Patterning Graphitic C-N Sheets into a Kagome Lattice for Magnetic Materials. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 259-63	6.4	52
207	Robust ferromagnetism in monolayer chromium nitride. Scientific Reports, 2014, 4, 5241	4.9	50
206	Body-Centered Tetragonal C : A Novel Topological Node-Line Semimetallic Carbon Composed of Tetrarings. <i>Small</i> , 2017 , 13, 1602894	11	49

(2018-2018)

205	A New Anisotropic Dirac Cone Material: A BS Honeycomb Monolayer. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1815-1820	6.4	49	
204	Superhalogen properties of CuF(n) clusters. <i>Journal of Chemical Physics</i> , 2009 , 131, 124301	3.9	49	
203	Structure of SiAu16: can a silicon atom be stabilized in a gold cage?. <i>Journal of Chemical Physics</i> , 2007 , 127, 214706	3.9	49	
202	Rational design of super-alkalis and their role in CO activation. <i>Nanoscale</i> , 2017 , 9, 4891-4897	7.7	47	
201	Exceptional Thermoelectric Properties of Layered GeAs2. Chemistry of Materials, 2017, 29, 9300-9307	9.6	47	
200	Ferromagnetic GaNCr Nanowires. <i>Nano Letters</i> , 2005 , 5, 1587-90	11.5	47	
199	CsPbCl-Driven Low-Trap-Density Perovskite Grain Growth for >20% Solar Cell Efficiency. <i>Advanced Science</i> , 2018 , 5, 1800474	13.6	47	
198	Strain-Induced Spin Crossover in Phthalocyanine-Based Organometallic Sheets. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 3109-14	6.4	46	
197	Density Functional Theory Study of the Interaction of Hydrogen with Li6C60. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1084-8	6.4	46	
196	Geometry and electronic structure of magic iron oxide clusters. <i>Physical Review B</i> , 1999 , 59, 12672-126	773.3	46	
195	Ferromagnetic and Half-Metallic FeC Monolayer Containing C Dimers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26207-26212	9.5	44	
194	Effect of Au coating on the magnetic and structural properties of Fe nanoclusters for use in biomedical applications: A density-functional theory study. <i>Physical Review B</i> , 2006 , 73,	3.3	44	
193	Electronic structure and bonding of Au on a SiO2 cluster: a nanobullet for tumors. <i>Physical Review Letters</i> , 2004 , 93, 186803	7.4	42	
192	Structure and properties of Mn4Cl9: an antiferromagnetic binary hyperhalogen. <i>Journal of Chemical Physics</i> , 2013 , 138, 054309	3.9	41	
191	Geometry and electronic structures of magic transition-metal oxide clusters M9O6 (M=Fe, Co, and Ni). <i>Physical Review B</i> , 2000 , 62, 8500-8507	3.3	39	
190	Intrinsic ferromagnetism in two-dimensional carbon structures: Triangular graphene nanoflakes linked by carbon chains. <i>Physical Review B</i> , 2011 , 84,	3.3	38	
189	First-principles studies of the geometry and energetics of the Si36 cluster. <i>Physical Review A</i> , 2003 , 67,	2.6	38	
188	Hydrogenated NaTiO Epitaxially Grown on Flexible N-Doped Carbon Sponge for Potassium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	37	

187	Tailoring Li adsorption on graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	36
186	Enhanced Hydrogen Storage on Li Functionalized BC3 Nanotube. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6136-6140	3.8	36
185	First-principles study of magnetic properties in V-doped ZnO. <i>Applied Physics Letters</i> , 2007 , 91, 063116	3.4	35
184	Magnetism in ZnO nanowire with Fe/Co codoping: First-principles density functional calculations. <i>Physical Review B</i> , 2010 , 81,	3.3	34
183	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. <i>Nano Energy</i> , 2021 , 80, 105516	17.1	34
182	Broadband Reflection in Polymer-Stabilized Cholesteric Liquid Crystals via Thiol-Acrylate Chemistry. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6698-6702	16.4	33
181	High-temperature superconductivity in heavily N- or B-doped graphene. <i>Physical Review B</i> , 2015 , 92,	3.3	33
180	Ligand induced ferromagnetism in ZnO nanostructures. <i>Journal of Chemical Physics</i> , 2008 , 129, 164714	3.9	33
179	Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures. <i>ACS Nano</i> , 2008 , 2, 341-7	16.7	33
178	Nitrogen-induced magnetic transition in small chromium clusters. <i>Journal of Chemical Physics</i> , 2003 , 119, 7124-7130	3.9	33
177	New Phosphorene Allotropes Containing Ridges with 2- and 4-Coordination. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 24674-24680	3.8	32
176	A new 3D Dirac nodal-line semi-metallic graphene monolith for lithium ion battery anode materials. Journal of Materials Chemistry A, 2018 , 6, 13816-13824	13	31
175	Structures of neutral and anionic Au(16) clusters revisited. <i>Journal of Chemical Physics</i> , 2010 , 132, 19430	06 .9	31
174	Penta-BCN: A New Ternary Pentagonal Monolayer with Intrinsic Piezoelectricity. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3501-3506	6.4	31
173	Tuning electronic and magnetic properties of silicene with magnetic superhalogens. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22979-86	3.6	30
172	Clustering of Cr in GaN nanotubes and the onset of ferrimagnetic order. <i>Physical Review B</i> , 2006 , 73,	3.3	29
171	A new C=C embedded porphyrin sheet with superior oxygen reduction performance. <i>Nano Research</i> , 2015 , 8, 2901-2912	10	28
170	Sc-phthalocyanine sheet: Promising material for hydrogen storage. <i>Applied Physics Letters</i> , 2011 , 99, 163104	3.4	28

(2017-2001)

169	Real-space representation of electron localization and shell structure in jelliumlike clusters. <i>Physical Review B</i> , 2001 , 63,	3.3	28	
168	Monoclinic C16: sp-sp hybridized nodal-line semimetal protected by PT-symmetry. <i>Carbon</i> , 2018 , 127, 527-532	10.4	28	
167	First-principles study of magnetism in (112 0) Zn1¼MnxO thin film. <i>Applied Physics Letters</i> , 2004 , 84, 4170-4172	3.4	27	
166	Piezoelectric Effects in Surface-Engineered Two-Dimensional Group III Nitrides. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 1033-1039	9.5	27	
165	Controlled Air-Etching Synthesis of Porous-Carbon Nanotube Aerogels with Ultrafast Charging at 1000 A g. <i>Small</i> , 2018 , 14, e1802394	11	27	
164	Ground-State Structure of YN2 Monolayer Identified by Global Search. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10258-10264	3.8	26	
163	Theoretical Study on Gold-Coated Iron Oxide Nanostructure: Magnetism and Bioselectivity for Amino Acids. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4159-4163	3.8	26	
162	Ferromagnetism in Al1\(\mathbb{\textrm{R}}\)CrxN thin films by density functional calculations. <i>Physical Review B</i> , 2006 , 73,	3.3	25	
161	2D SnSe-based vdW heterojunctions: tuning the Schottky barrier by reducing Fermi level pinning. <i>Nanoscale</i> , 2018 , 10, 13767-13772	7.7	24	
160	N-doped ZnO thin films and nanowires: energetics, impurity distribution and magnetism. <i>New Journal of Physics</i> , 2009 , 11, 063035	2.9	24	
159	Two-Dimensional T-NiSe as a Promising Anode Material for Potassium-Ion Batteries with Low Average Voltage, High Ionic Conductivity, and Superior Carrier Mobility. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35661-35666	9.5	23	
158	An all-carbon vdW heterojunction composed of penta-graphene and graphene: Tuning the Schottky barrier by electrostatic gating or nitrogen doping. <i>Applied Physics Letters</i> , 2017 , 111, 073503	3.4	23	
157	First-principles study of hydrogen adsorption in metal-doped COF-10. <i>Journal of Chemical Physics</i> , 2010 , 133, 154706	3.9	23	
156	Integrating conductivity and active sites: Fe/Fe3C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium Bulfur cell with outstanding rate performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18987-19000	13	23	
155	Like Charges Attract?. Journal of Physical Chemistry Letters, 2016, 7, 2689-95	6.4	23	
154	Tunable ferromagnetism in assembled two dimensional triangular graphene nanoflakes. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2065-9	3.6	22	
153	Marrying Ester Group with Lithium Salt: Cellulose-Acetate-Enabled LiF-Enriched Interface for Stable Lithium Metal Anodes. <i>Advanced Functional Materials</i> , 2021 , 31, 2102228	15.6	22	
152	Topological insulating states in 2D transition metal dichalcogenides induced by defects and strain. <i>Nanoscale</i> , 2017 , 9, 562-569	7.7	21	

151	Rational Design of Porous Nodal-Line Semimetallic Carbon for K-Ion Battery Anode Materials. Journal of Physical Chemistry Letters, 2019 , 10, 6360-6367	6.4	21
150	2D planar penta-MN (M = Pd, Pt) sheets identified through structure search. <i>Physical Chemistry Chemical Physics</i> , 2018 , 21, 246-251	3.6	21
149	Structure, Stability, and Property Modulations of Stoichiometric Graphene Oxide. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 1064-1070	3.8	21
148	Hydrogen Storage in Organometallic Structures Grafted on Silsesquioxanes. <i>Chemistry of Materials</i> , 2007 , 19, 3074-3078	9.6	21
147	First-principles studies on the intrinsic stability of the magic Fe13O8 cluster. <i>Physical Review B</i> , 2000 , 61, 5781-5785	3.3	21
146	Self-consistent determination of Hubbard U for explaining the anomalous magnetism of the Gd13 cluster. <i>Physical Review B</i> , 2014 , 89,	3.3	20
145	Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries. ACS Energy Letters, 2016, 1, 202-20)8 20.1	19
144	Surface-Based Li+ Complex Enables Uniform Lithium Deposition for Stable Lithium Metal Anodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 4602-4608	6.1	19
143	Ab initio study of ferromagnetism in Ga1⊠CrxN thin films. <i>Physical Review B</i> , 2005 , 72,	3.3	19
142	Pressure-induced magnetic crossover driven by hydrogen bonding in CuF(HD)(B-chloropyridine). <i>Scientific Reports</i> , 2014 , 4, 6054	4.9	18
141	2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation. <i>2D Materials</i> , 2017 , 4, 035009	5.9	18
140	Ab initio study of electronic and magnetic properties of the C-codoped Ga1kMnxN (101lb) surface. <i>Physical Review B</i> , 2007 , 75,	3.3	18
139	Comment on "Fully coordinated silica nanoclusters: (SiO2)N molecular rings". <i>Physical Review Letters</i> , 2004 , 92, 039601; author reply 039602	7.4	18
138	TiS sheet based van der Waals heterostructures with a tunable Schottky barrier. <i>Nanoscale</i> , 2018 , 10, 807-815	7.7	18
137	N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction. <i>Carbon</i> , 2019 , 152, 241-246	10.4	17
136	Graphdiyne as an ideal monolayer coating material for lithium-ion battery cathodes with ultralow areal density and ultrafast Li penetration. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12630-12636	13	17
135	Strain Effect on Thermoelectric Performance of InSe Monolayer. <i>Nanoscale Research Letters</i> , 2019 , 14, 287	5	17
134	Magnetism of two-dimensional triangular nanoflake-based kagome lattices. <i>New Journal of Physics</i> , 2012 , 14, 033043	2.9	17

133	First-principles studies on magnetism of Ni clusters coated and alloyed with Pd. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2000 , 267, 394-402	2.3	17	
132	Local Magnetism of 3d and 4d Impurities in Ag and Pd Clusters. <i>Journal De Physique, I</i> , 1997 , 7, 1233-124	4	16	
131	Colossal Stability of Gas-Phase Trianions: Super-Pnictogens. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13421-13425	16.4	15	
130	Weak interlayer dependence of lattice thermal conductivity on stacking thickness of penta-graphene. <i>Applied Physics Letters</i> , 2017 , 111, 192102	3.4	15	
129	Giant magnetocrystalline anisotropy of 5d transition metal-based phthalocyanine sheet. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17182-9	3.6	15	
128	Anisotropy and Transport Properties of Tubular C-BN Janus Nanostructures. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23978-23983	3.8	15	
127	Mg-doped GaN nanostructures: Energetics, magnetism, and H2 adsorption. <i>Applied Physics Letters</i> , 2009 , 94, 013108	3.4	15	
126	First-principles study of LaB36N36 cage. <i>Physica B: Condensed Matter</i> , 2003 , 339, 105-109	2.8	15	
125	First-principles study of ferromagnetic coupling in Zn1\(\mathbb{L}\)CrxTe thin film. <i>Journal of Applied Physics</i> , 2005 , 97, 043904	2.5	15	
124	Structures of magic Ba clusters and magic Ba suboxide clusters. <i>Physical Review A</i> , 2000 , 62,	2.6	15	
123	Lattice Dynamic and Instability in Pentasilicene: A Light Single-Element Ferroelectric Material With High Curie Temperature. <i>Physical Review Applied</i> , 2019 , 11,	4.3	14	
122	Metastability of a gold nanoring: Density-functional calculations. <i>Physical Review B</i> , 2004 , 70,	3.3	14	
121	Ultrahigh thermal conductivity of carbon allotropes with correlations with the scaled Pugh ratio. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6259-6266	13	14	
120	PCF-Graphene: A 2D sp2-Hybridized Carbon Allotrope with a Direct Band Gap. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 4567-4573	3.8	13	
119	Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers. <i>Scientific Reports</i> , 2016 , 6, 29531	4.9	13	
118	Stability and electronic structure of bilayer graphone. <i>Applied Physics Letters</i> , 2011 , 98, 063108	3.4	13	
117	Soft breakdown of an insulating nanowire in an electric field. <i>Nanotechnology</i> , 2004 , 15, 260-263	3.4	13	
116	Interaction of magic gold cluster with Si(_mathsf{60}) cage. European Physical Journal D, 2004 , 29, 231-2	3.43	13	

115	Design of a heterostructure peapod using magic silicon clusters. <i>Physical Review B</i> , 2002 , 66,	3.3	13
114	SnS Nanosheets Anchored on Nitrogen and Sulfur Co-Doped MXene Sheets for High-Performance Potassium-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 17668-17676	9.5	13
113	Stabilizing benzene-like planar N rings to form a single atomic honeycomb BeN sheet with high carrier mobility. <i>Nanoscale</i> , 2018 , 10, 949-957	7.7	13
112	Thermoelectric Properties of Two-Dimensional Gallium Telluride. <i>Journal of Electronic Materials</i> , 2019 , 48, 5988-5994	1.9	12
111	Electronic and optical properties of silicon based porous sheets. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16832-6	3.6	12
110	First-principles studies on pure and doped C32clusters. <i>Journal of Physics Condensed Matter</i> , 2001 , 13, 1931-1938	1.8	12
109	Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film. <i>Nanoscale</i> , 2016 , 8, 11202-9	7.7	12
108	Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route. <i>Nano Research</i> , 2017 , 10, 2761-2771	10	11
107	Porous-Carbon Aerogels with Tailored Sub-Nanopores for High Cycling Stability and Rate Capability Potassium-Ion Battery Anodes. <i>ACS Applied Materials & District Amplied Materials & District</i>	9.5	11
106	A 3D porous honeycomb carbon as Na-ion battery anode material with high capacity, excellent rate performance, and robust stability. <i>Carbon</i> , 2020 , 168, 163-168	10.4	11
105	A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets. <i>AIP Advances</i> , 2015 , 5, 107105	1.5	11
104	Reaction-induced magnetic transition in Mn2 dimers. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 549-55	2.8	11
103	Ferromagnetism in Two-Dimensional Carbon Chains Linked by 1,3,5-Benzenetriyl Units. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19621-19625	3.8	11
102	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator for Lithium-Sulfur Batteries. <i>Advanced Materials</i> , 2021 , e2107638	24	11
101	Experimental observation of TiN cluster and theoretical investigation of its stable and metastable isomers. <i>Chemical Science</i> , 2015 , 6, 4723-4729	9.4	10
100	Self-assembly of metal atoms (Na, K, Ca) on graphene. <i>Nanoscale</i> , 2015 , 7, 2352-9	7.7	10
99	Structure and interaction mechanism in the magic Al13+H2O cluster. <i>Physical Review A</i> , 2001 , 64,	2.6	10
98	Thermal transport properties of penta-graphene with grain boundaries. <i>Carbon</i> , 2019 , 145, 445-451	10.4	10

(2016-2018)

97	Physical Properties and Photovoltaic Application of Semiconducting PdBelMonolayer. <i>Nanomaterials</i> , 2018 , 8,	5.4	10
96	Contact properties of a vdW heterostructure composed of penta-graphene and penta-BN2 sheets. <i>Journal of Applied Physics</i> , 2018 , 124, 165103	2.5	10
95	Large Second Harmonic Generation in Elemental Esb and Esi Monolayers. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5506-5513	3.8	9
94	Thermoelectric properties of two-dimensional hexagonal indium-VA. <i>Chinese Physics B</i> , 2018 , 27, 02680	2 _{1.2}	9
93	Phosphorus K Crystal: A New Stable Allotrope. <i>Scientific Reports</i> , 2016 , 6, 37528	4.9	9
92	Ferromagnetic to ferrimagnetic crossover in Cr-doped GaN nanohole arrays. <i>Physical Review B</i> , 2007 , 75,	3.3	9
91	Dimer interactions of magic W@Si12 clusters. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 4503-4508	3 1.8	9
90	High Curie temperature ferromagnetism in penta-MnN2 monolayer. <i>Applied Surface Science</i> , 2020 , 505, 144620	6.7	9
89	Ultralow thermal conductivity and negative thermal expansion of CuSCN. <i>Nano Energy</i> , 2020 , 73, 10482	217.1	9
88	Classifying superheavy elements by machine learning. <i>Physical Review A</i> , 2019 , 99,	2.6	8
87	An asymmetric quasi-solid electrolyte for high-performance Li metal batteries. <i>Chemical Communications</i> , 2020 , 56, 7195-7198	5.8	8
86	Prediction of a BeP2 monolayer with a compression-induced Dirac semimetal state. <i>Physical Review B</i> , 2018 , 97,	3.3	8
85	Unidirectional Spin-Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices. <i>Nano Letters</i> , 2019 , 19, 6005-6012	11.5	8
84	All-metal clusters that mimic the chemistry of halogens. <i>ChemPhysChem</i> , 2013 , 14, 3227-32	3.2	8
83	Communication: In search of four-atom chiral metal clusters. <i>Journal of Chemical Physics</i> , 2013 , 139, 111	13031	8
82	Broadband Reflection in Polymer-Stabilized Cholesteric Liquid Crystals via ThiolAcrylate Chemistry. <i>Angewandte Chemie</i> , 2019 , 131, 6770-6774	3.6	7
81	A metallic peanut-shaped carbon nanotube and its potential for CO2 capture. <i>Carbon</i> , 2018 , 132, 249-25	56 0.4	7
80	Thermal exfoliation of stoichiometric single-layer silica from the stishovite phase: insight from first-principles calculations. <i>Nanoscale</i> , 2016 , 8, 10598-606	7.7	7

79	High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature <i>RSC Advances</i> , 2018 , 8, 21280-21287	3.7	7
78	Quasi-freestanding, striped WS2 monolayer with an invariable band gap on Au(001). <i>Nano Research</i> , 2017 , 10, 3875-3884	10	7
77	Geometry and energetics of Si60 isomers. Science and Technology of Advanced Materials, 2003, 4, 361-36	6 5 .1	7
76	Potential of porous nodal-line semi-metallic carbon for sodium-ion battery anode. <i>Journal of Power Sources</i> , 2020 , 478, 228746	8.9	7
75	A C-based 3D carbon allotrope with high thermal conductivity. <i>Physical Chemistry Chemical Physics</i> , 2019 , 22, 306-312	3.6	7
74	Binder-Free TiO2-Coated Polypropylene Separators for Advanced Lithium-Ion Batteries. <i>Energy Technology</i> , 2020 , 8, 2000228	3.5	6
73	Large Out-of-Plane Second Harmonic Generation Susceptibility in Penta-ZnS2 Sheet. <i>Advanced Theory and Simulations</i> , 2020 , 3, 2000027	3.5	6
72	A C fullerene-based sheet with ultrahigh thermal conductivity. <i>Nanoscale</i> , 2018 , 10, 6099-6104	7.7	6
71	Colossal Stability of Gas-Phase Trianions: Super-Pnictogens. <i>Angewandte Chemie</i> , 2017 , 129, 13606-136	19 .6	6
70	Magnetism of triangular nanoflakes with different compositions and edge terminations. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	6
69	Geometry, Electronic Properties, and Hydrogen Adsorption Properties of Li3N-Based Nanostructures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19202-19205	3.8	6
68	Can 5d transition-metal monolayers BE magnetic on ferromagnetic substrate?. <i>Solid State Communications</i> , 1998 , 106, 665-667	1.6	6
67	Effect of Hydrogen on the Magnetism and Its Solubility in Ferromagnetic Nickel. <i>Materials Transactions, JIM</i> , 1999 , 40, 1244-1248		6
66	Interfacial properties of penta-graphene-metal contacts. <i>Journal of Applied Physics</i> , 2019 , 125, 065308	2.5	6
65	1,2,4-Azadiphosphole-based piezoelectric penta-CNP sheet with high spontaneous polarization. <i>Applied Surface Science</i> , 2021 , 554, 149499	6.7	6
64	Rational Design of Stable Dianions and the Concept of Super-Chalcogens. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5753-5761	2.8	5
63	Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	5
62	Adsorption of oxygen-containing functional groups on free and supported graphene using point contact. <i>Physical Review B</i> , 2012 , 85,	3.3	5

(2011-2008)

61	Dependence of Magnetism on Doping Concentration in V-Doped Bulk ZnO. <i>Materials Transactions</i> , 2008 , 49, 2469-2473	1.3	5
60	Theoretical Study of Hydrogen Solubility in Fe, Co and Ni. <i>Materials Transactions, JIM</i> , 1999 , 40, 855-858		5
59	Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive. <i>Energy Storage Materials</i> , 2022 , 45, 777-785	19.4	5
58	Low lattice thermal conductivity of pentadiamond. <i>Journal of Applied Physics</i> , 2021 , 129, 215107	2.5	5
57	Strain and carrier-induced coexistence of topologically insulating and superconducting phase in iodized Si(111) films. <i>Nano Research</i> , 2016 , 9, 1578-1589	10	5
56	Research progress on penta-graphene and its related materials: Properties and applications. <i>Nano Today</i> , 2022 , 44, 101501	17.9	5
55	First-principles study of the effect of vacancies on magnetic properties of Zn1 - xCoxO thin films. Journal of Physics Condensed Matter, 2010 , 22, 076002	1.8	4
54	Tuning magnetic properties of Mn(4) cluster with gold coating. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 1493-6	3.6	4
53	First-principles study on the local magnetism of Fe/Nb multilayers. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 239, 406-410	2.3	4
52	Interactions of uranium atom with tetraketone complexes. <i>Chemical Physics Letters</i> , 2005 , 415, 243-245	2.5	4
51	First-Principles Calculation on Dissociation of Hydrogen Molecule in Nickel. <i>Materials Transactions, JIM</i> , 2000 , 41, 1114-1117		4
50			
	Enhancing power factor of SnSe sheet with grain boundary by doping germanium or silicon. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	4
49	Computational Materials, 2020, 6, Performance of the Pentagonal PdSe2 Sheet as a Channel Material in Contact with Metal Surfaces	10.9	4
49	Computational Materials, 2020, 6, Performance of the Pentagonal PdSe2 Sheet as a Channel Material in Contact with Metal Surfaces and Graphene. ACS Applied Electronic Materials, 2020, 2, 2535-2542 Origins of low lattice thermal conductivity in 2D carbon allotropes. Journal of Materials Research		
	Computational Materials, 2020, 6, Performance of the Pentagonal PdSe2 Sheet as a Channel Material in Contact with Metal Surfaces and Graphene. ACS Applied Electronic Materials, 2020, 2, 2535-2542 Origins of low lattice thermal conductivity in 2D carbon allotropes. Journal of Materials Research and Technology, 2021, 11, 1982-1990 Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium	4	
48	Performance of the Pentagonal PdSe2 Sheet as a Channel Material in Contact with Metal Surfaces and Graphene. ACS Applied Electronic Materials, 2020, 2, 2535-2542 Origins of low lattice thermal conductivity in 2D carbon allotropes. Journal of Materials Research and Technology, 2021, 11, 1982-1990 Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film. Applied Physics Letters, 2016, 108, 253102	4 5·5	4
48	Computational Materials, 2020, 6, Performance of the Pentagonal PdSe2 Sheet as a Channel Material in Contact with Metal Surfaces and Graphene. ACS Applied Electronic Materials, 2020, 2, 2535-2542 Origins of low lattice thermal conductivity in 2D carbon allotropes. Journal of Materials Research and Technology, 2021, 11, 1982-1990 Integrating superconducting phase and topological crystalline quantum spin Hall effect in hafnium intercalated gallium film. Applied Physics Letters, 2016, 108, 253102 Screening transition metal-based polar pentagonal monolayers with large piezoelectricity and shift current. Npj Computational Materials, 2022, 8, Structural, electronic and magnetic properties of neutral and anionic Fe2(BO2)n (n=1B) clusters.	4 5.5 3.4	4

43	Stabilizing a 22 karat nanogolden cage. <i>Journal of Chemical Physics</i> , 2009 , 131, 204501	3.9	3
42	Geometry and Energetics of Nano Gears. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 1457-1461	0.3	3
41	The local magnetic properties of sp impurities in alkali metal clusters. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1997 , 228, 297-300	2.3	3
40	The local magnetism of Fe impurity in Nbn and NbnMom clusters. <i>Journal of Magnetism and Magnetic Materials</i> , 1998 , 184, 106-110	2.8	3
39	Structures and stability of Al 7 C and Al 7 N clusters. European Physical Journal D, 2002, 18, 77-81	1.3	3
38	First-Principles Study of the Magic Ar6Fe+ Cluster. <i>Materials Transactions</i> , 2001 , 42, 2172-2174	1.3	3
37	Quantum size effect and temperature effect on spin-polarized transport in ZnSe/Zn1\(\text{M}\)MnxSe multilayers. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001 , 284, 205-215	2.3	3
36	Capacitance of magic Ba n clusters. <i>Scripta Materialia</i> , 2001 , 44, 1959-1962	5.6	3
35	First-principles studies on the adsorptive properties of hydrogenated Si cluster. <i>Physica B: Condensed Matter</i> , 1999 , 269, 239-243	2.8	3
34	Atomic Structure of Pd-Intercalated Graphite by High-Resolution Electron Microscopy and First Principles Calculations. <i>Materials Transactions, JIM</i> , 1999 , 40, 1213-1218		3
33	Na-functionalized IrTe2 monolayer: Suppressed charge ordering and electric field tuned topological phase transition. <i>Physical Review B</i> , 2020 , 102,	3.3	3
32	Hex-C558: A new porous metallic carbon allotrope for lithium-ion battery anode. <i>Carbon</i> , 2021 , 183, 652	2-659	3
31	Low lattice thermal conductivity of a 5-8-peanut-shaped carbon nanotube. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 5460-5466	3.6	3
30	Pentagon-based 2D materials: Classification, properties and applications. <i>Physics Reports</i> , 2022 , 964, 1-42	27.7	3
29	Doping induced anisotropic growth in C60. Journal of Chemical Physics, 2009, 130, 184714	3.9	2
28	Effect of Magnetic Transition on Hydrogen Solubility in Ni. Materials Transactions, JIM, 2000 , 41, 621-62	3	2
27	Low thermal conductivity of peanut-shaped carbon nanotube and its insensitive response to uniaxial strain. <i>Nanotechnology</i> , 2020 , 31, 115701	3.4	2
26	Strain-engineering of bandgaps in pristine and fully hydrogenated hexagonal boron phosphide. <i>Journal of Applied Physics</i> , 2020 , 128, 094302	2.5	2

(2020-2021)

25	A New Porous Metallic Carbon Allotrope with Interlocking Pentagons for Sodium-Ion Battery Anode Material. <i>Advanced Theory and Simulations</i> , 2021 , 4, 2100025	3.5	2
24	A new 3D metallic carbon allotrope composed of penta-graphene nanoribbons as a high-performance anode material for sodium-ion batteries. <i>Journal of Materials Chemistry A</i> ,	13	2
23	MXene-Supported, Atomic-Layered Iridium Catalysts Created by Nanoparticle Re-Dispersion for Efficient Alkaline Hydrogen Evolution <i>Small</i> , 2022 , 18, e2105226	11	2
22	Probing the existence of energetically degenerate cluster isomers by chemical tagging. <i>Applied Physics Letters</i> , 2010 , 97, 223104	3.4	1
21	Interaction of C(59)Si with Si based clusters: a study of Janus nanostructures. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 275303	1.8	1
20	NonmetalEnetal transition in Ban clusters. Solid State Communications, 2001, 117, 635-639	1.6	1
19	First-Principles Studies on Pd Intercalated Graphite. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 340, 283-288		1
18	Capacitance of Microclusters. <i>Materials Transactions, JIM</i> , 1999 , 40, 1224-1227		1
17	Porous Carbon Tubes Constructing Freestanding Flexible Electrodes for Symmetric Potassium-Ion Hybrid Capacitors. <i>ACS Applied Energy Materials</i> ,	6.1	1
16	ECsCu5Se3: A Promising Thermoelectric Material going beyond Photovoltaic Application. <i>Advanced Theory and Simulations</i> , 2020 , 3, 2000169	3.5	1
15	The geometry, electronic and magnetic properties of VLin (n = 2113) clusters using the first-principles and PSO method. <i>Molecular Physics</i> , 2020 , 118, e1791990	1.7	1
14	Identifying key parameters for predicting materials with low defect generation efficiency by machine learning. <i>Computational Materials Science</i> , 2021 , 191, 110306	3.2	1
13	Pentagonal BN-based 3D metallic boron nitride with high energy density. <i>Journal of Physics Condensed Matter</i> , 2021 , 33,	1.8	1
12	Many faces of carbon 2016 ,		1
11	Imidazole-graphyne: a new 2D carbon nitride with a direct bandgap and strong IR refraction. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 10274-10280	3.6	1
10	Design of 3D topological nodal-net porous carbon for sodium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 7754-7763	13	1
9	A novel construction of Ti3C2@complete edge-nitrogen doped carbon spheres with excellent K-ion storage performance. <i>Nano Energy</i> , 2022 , 97, 107161	17.1	1
8	Ground state structure and physical properties of silicon monoxide sheet. <i>Applied Surface Science</i> , 2020 , 527, 146759	6.7	O

7	Boron-Functionalized Organic Framework as a High-Performance Metal-Free Catalyst for N Fixation <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 12142-12149	6.4	О
6	In-Situ Construction of Ceramic P olymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries1297-1305		O
5	Titelbild: Colossal Stability of Gas-Phase Trianions: Super-Pnictogens (Angew. Chem. 43/2017). <i>Angewandte Chemie</i> , 2017 , 129, 13333-13333	3.6	
4	Effects of clusterdluster interactions on the structure and magnetic properties in (Fe6)2. <i>Materials Science & Microstructure and Processing</i> , 1998 , 241, 137-140	5.3	
3	Magnetic phase transition and hydrogen solubility in Fe, Co, and Ni. <i>Journal of Phase Equilibria and Diffusion</i> , 2001 , 22, 504-507		
2	Deep Traps in LiF: Mg, Ti. <i>Physica Status Solidi A</i> , 1994 , 145, K1-K4		

On the Metastable States of Low Dimensional Magnetic Systems. *Journal of the Magnetics Society of Japan*, **1999**, 23, 590-592