Peter T Cummings

List of Publications by Citations

Source: https://exaly.com/author-pdf/7068963/peter-t-cummings-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

460 papers

16,558 citations

66 h-index

103 g-index

483 ext. papers

17,797 ext. citations

avg, IF

6.67 L-index

#	Paper	IF	Citations
460	Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. <i>Cell</i> , 2006 , 127, 905-15	56.2	573
459	Three-dimensional tracking of motile bacteria near a solid planar surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 6195-9	11.5	280
458	Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2859-2864	6.4	263
457	Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of ab Initio Potentials. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1204	1 3:1 20	6 6 45
456	Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. <i>Journal of Chemical Physics</i> , 2005 , 122, 234712	3.9	210
455	From dimer to condensed phases at extreme conditions: accurate predictions of the properties of water by a Gaussian charge polarizable model. <i>Journal of Chemical Physics</i> , 2005 , 122, 244511	3.9	190
454	Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 2699-2716	2.8	187
453	Water Adsorption in Carbon-Slit Nanopores. <i>Langmuir</i> , 2003 , 19, 8583-8591	4	181
452	Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15243-9	3.4	179
451	Simulation of supercritical water and of supercritical aqueous solutions. <i>Journal of Chemical Physics</i> , 1991 , 94, 5606-5621	3.9	169
450	Quantitative comparison and optimization of methods for evaluating the chemical potential by molecular simulation. <i>Molecular Physics</i> , 1997 , 92, 973-996	1.7	162
449	Oscillatory Behavior of Double-Walled Nanotubes under Extension: A Simple Nanoscale Damped Spring. <i>Nano Letters</i> , 2003 , 3, 1001-1005	11.5	160
448	Fluidity of hydration layers nanoconfined between mica surfaces. <i>Physical Review Letters</i> , 2005 , 94, 026	1 , 0.4	156
447	Solute-induced effects on the structure and thermodynamics of infinitely dilute mixtures. <i>AICHE Journal</i> , 1994 , 40, 1558-1573	3.6	151
446	Simulations of the Quartz(101 1)/Water Interface: A Comparison of Classical Force Fields, Ab Initio Molecular Dynamics, and X-ray Reflectivity Experiments. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 207	6 ³ 2088	3 ¹⁴⁵
445	Molecular simulation of water along the liquidNapor coexistence curve from 25 °C to the critical point. <i>Journal of Chemical Physics</i> , 1990 , 93, 7355-7359	3.9	145
444	Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions. <i>Journal of Chemical Physics</i> , 1996 , 105, 8274-8281	3.9	143

(2002-1989)

443	Process optimization via simulated annealing: Application to network design. <i>AICHE Journal</i> , 1989 , 35, 725-736	3.6	140
442	Nanoscale perturbations of room temperature ionic liquid structure at charged and uncharged interfaces. <i>ACS Nano</i> , 2012 , 6, 9818-27	16.7	137
441	Statistical mechanical models of chemical reactions. <i>Molecular Physics</i> , 1984 , 51, 253-287	1.7	136
440	Na+Illon pair association in supercritical water. <i>Journal of Chemical Physics</i> , 1995 , 103, 9379-9387	3.9	131
439	Molecular simulation of the transition from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps. <i>Journal of Chemical Physics</i> , 2001 , 114, 7189-7195	3.9	127
438	Comparison of shear flow of hexadecane in a confined geometry and in bulk. <i>Journal of Chemical Physics</i> , 1997 , 106, 7303-7314	3.9	126
437	Computational Insights into Materials and Interfaces for Capacitive Energy Storage. <i>Advanced Science</i> , 2017 , 4, 1700059	13.6	122
436	Molecular dynamics simulation of titanium dioxide nanoparticle sintering. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 24280-7	3.4	122
435	Molecular simulations of liquid-liquid interfacial properties: water-n-alkane and water-methanol-n-alkane systems. <i>Physical Review E</i> , 2003 , 67, 011603	2.4	122
434	C60 binds to and deforms nucleotides. <i>Biophysical Journal</i> , 2005 , 89, 3856-62	2.9	120
433	Microstructure of Ambient and Supercritical Water. Direct Comparison between Simulation and Neutron Scattering Experiments. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 1309-1316		119
432	Electric Double Layer at the Rutile (110) Surface. 2. Adsorption of Ions from Molecular Dynamics and X-ray Experiments. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12061-12072	3.4	118
431	Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite. <i>Nano Letters</i> , 2013 , 13, 5954-60	11.5	117
430	Dynamics and Structure of Hydration Water on Rutile and Cassiterite Nanopowders Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4328-4341	3.8	117
429	Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3367-3376	6.4	112
428	Alkyl Chain Length and Temperature Effects on Structural Properties of Pyrrolidinium-Based Ionic Liquids: A Combined Atomistic Simulation and Small-Angle X-ray Scattering Study. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 125-130	6.4	112
427	Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane. Journal of Chemical Physics, 1996 , 105, 1214-1220	3.9	111
		_	

425	Hydrogen bonding in supercritical water. <i>Journal of Chemical Physics</i> , 1994 , 101, 4466-4469	3.9	109
424	Interaction site models for molecular fluids. <i>Molecular Physics</i> , 1982 , 46, 383-426	1.7	105
423	Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 1058-63	6.4	104
422	Nonequilibrium molecular dynamics approaches to transport properties and non-Newtonian fluid rheology. <i>Industrial & Engineering Chemistry Research</i> , 1992 , 31, 1237-1252	3.9	100
421	The oscillatory damped behaviour of incommensurate double-walled carbon nanotubes. <i>Nanotechnology</i> , 2005 , 16, 186-98	3.4	99
420	Hydration structure of water confined between mica surfaces. <i>Journal of Chemical Physics</i> , 2006 , 124, 74711	3.9	97
419	Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 569-574	3.8	96
418	Supercritical fluid behavior at nanoscale interfaces: Implications for CO2 sequestration in geologic formations. <i>Philosophical Magazine</i> , 2010 , 90, 2339-2363	1.6	96
417	Generation of percolation cluster perimeters by a random walk. <i>Journal of Physics A</i> , 1984 , 17, 3009-30	17	96
416	Molecular Dynamics Study of the Structure and Thermophysical Properties of Model sI Clathrate Hydrates. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 442-451	3.4	94
415	Multiple time step nonequilibrium molecular dynamics simulation of the rheological properties of liquid n-decane. <i>Journal of Chemical Physics</i> , 1996 , 104, 255-262	3.9	94
414	Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 1. Structural Properties of Aggregates. <i>Langmuir</i> , 2001 , 17, 1773-1783	4	93
413	Simulated water adsorption isotherms in carbon nanopores. <i>Molecular Physics</i> , 2004 , 102, 243-251	1.7	86
412	Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 4668-74	3.6	84
411	Intermolecular potentials and vaporliquid phase equilibria of perfluorinated alkanes. <i>Fluid Phase Equilibria</i> , 1998 , 146, 51-61	2.5	84
410	Surface protonation at the rutile (110) interface: explicit incorporation of solvation structure within the refined MUSIC model framework. <i>Langmuir</i> , 2008 , 24, 12331-9	4	84
409	Self-Assembly of Reverse Micelles in Water/Surfactant/Carbon Dioxide Systems by Molecular Simulation. <i>Langmuir</i> , 1999 , 15, 5188-5192	4	82
408	Phase transformations during sintering of titania nanoparticles. <i>ACS Nano</i> , 2008 , 2, 1620-4	16.7	81

407	Determination of the Gibbs Free Energy of Gas Replacement in SI Clathrate Hydrates by Molecular Simulation. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 7982-7987	2.8	81
406	A molecular dynamics study of a short-chain polyethylene melt <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2000 , 93, 83-99	2.7	81
405	Mathematical modeling of cancer: the future of prognosis and treatment. <i>Clinica Chimica Acta</i> , 2005 , 357, 173-9	6.2	79
404	Molecular Dynamics Study of Water Adsorption on TiO2Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6920-6926	3.8	78
403	Recent developments in non-Newtonian molecular dynamics. <i>Physics Reports</i> , 1998 , 305, 1-92	27.7	75
402	Precision and accuracy of staged free-energy perturbation methods for computing the chemical potential by molecular simulation. <i>Fluid Phase Equilibria</i> , 1998 , 150-151, 41-49	2.5	75
401	SHARP REGULARITY COEFFICIENT ESTIMATES FOR COMPLEX-VALUED ACOUSTIC AND ELASTIC HELMHOLTZ EQUATIONS. <i>Mathematical Models and Methods in Applied Sciences</i> , 2006 , 16, 139-160	3.5	74
400	Critical behavior of the Yukawa fluid in the mean spherical approximation. <i>Journal of Chemical Physics</i> , 1983 , 78, 1917-1923	3.9	72
399	Dynamics of Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12334-12341	3.8	71
398	Molecular simulation study of solvation structure in supercritical aqueous solutions. <i>Chemical Engineering Science</i> , 1994 , 49, 2735-2748	4.4	70
397	Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. <i>Journal of Chemical Physics</i> , 1997 , 107, 10316-10326	3.9	69
396	Electric Double Layer at the Rutile (110) Surface. 3. Inhomogeneous Viscosity and Diffusivity Measurement by Computer Simulations. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3071-3079	3.8	66
395	Rheology of lubricant basestocks: A molecular dynamics study of C30 isomers. <i>Journal of Chemical Physics</i> , 2000 , 113, 8833-8840	3.9	66
394	Simulated water adsorption in chemically heterogeneous carbon nanotubes. <i>Journal of Chemical Physics</i> , 2006 , 124, 74710	3.9	65
393	Statistical mechanical models of chemical reactions. <i>Molecular Physics</i> , 1985 , 55, 33-48	1.7	65
392	An off-lattice hybrid discrete-continuum model of tumor growth and invasion. <i>Biophysical Journal</i> , 2010 , 98, 37-47	2.9	63
391	Solvation in supercritical water. Fluid Phase Equilibria, 1992, 71, 1-16	2.5	63
390	On the Yukawa closure of the Ornstein-Zernike equation. <i>Molecular Physics</i> , 1979 , 38, 997-1001	1.7	63

389	Simple transferable intermolecular potential for the molecular simulation of water over wide ranges of state conditions. <i>Fluid Phase Equilibria</i> , 1998 , 150-151, 73-81	2.5	62
388	Electric double layer at metal oxide surfaces: static properties of the cassiterite-water interface. <i>Langmuir</i> , 2007 , 23, 4925-37	4	61
387	Molecular dynamics study of the nano-rheology of n-dodecane confined between planar surfaces. Journal of Chemical Physics, 2003 , 118, 8941-8944	3.9	61
386	Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9178-9186	3.8	60
385	Random walk calculations for bacterial migration in porous media. <i>Biophysical Journal</i> , 1995 , 68, 800-6	2.9	60
384	Exact asymptotic form of the site-site direct correlation function for rigid polar molecules. <i>Molecular Physics</i> , 1981 , 44, 529-531	1.7	60
383	Percus-Yevick theory of correlation functions and nucleation effects in the sticky hard-sphere model. <i>Molecular Physics</i> , 1976 , 31, 535-548	1.7	60
382	Mean spherical approximation for a model liquid metal potential. <i>Molecular Physics</i> , 1981 , 43, 1267-129	11.7	59
381	Evaluation of force fields for molecular simulation of polyhedral oligomeric silsesquioxanes. Journal of Physical Chemistry B, 2006 , 110, 2502-10	3.4	58
380	Vapor-Liquid Phase Coexistence of Alkanellarbon Dioxide and Perfluoroalkanellarbon Dioxide Mixtures. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 4485-4491	3.4	58
379	Interfacial ionic 'liquids': connecting static and dynamic structures. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 032101	1.8	57
378	Cellular Dynamics simulations of bacterial chemotaxis. <i>Chemical Engineering Science</i> , 1993 , 48, 687-699	4.4	57
377	A model for association in electrolytes. Analytic solution of the hypernetted-chain/mean spherical approximation. <i>Journal of Chemical Physics</i> , 1985 , 83, 317-325	3.9	57
376	Suppression of the dynamic transition in surface water at low hydration levels: a study of water on rutile. <i>Physical Review E</i> , 2009 , 79, 051504	2.4	56
375	Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces. <i>Langmuir</i> , 2013 , 29, 9744-9	4	55
374	Distinctive Nanoscale Organization of Dicationic versus Monocationic Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18251-18257	3.8	55
373	Investigating the quartz (1010)/water interface using classical and ab initio molecular dynamics. <i>Langmuir</i> , 2011 , 27, 8700-9	4	55
372	Thermodynamic and transport properties of polyhedral oligomeric sislesquioxanes in poly(dimethylsiloxane). <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14300-7	3.4	55

371	Liquidgas transition for hard spheres with attractive Yukawa tail interactions. <i>Chemical Physics</i> , 1979 , 42, 241-247	2.3	55	
370	Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field. <i>Journal of Chemical Physics</i> , 1991 , 94, 2149-2158	3.9	54	
369	Molecular dynamics simulations of stretched gold nanowires: the relative utility of different semiempirical potentials. <i>Journal of Chemical Physics</i> , 2007 , 126, 144707	3.9	53	
368	Ejection of atoms upon self-trapping of an atomic exciton in solid argon. <i>Physical Review B</i> , 1989 , 39, 9580-9583	3.3	53	
367	Experimental measurement of vapor-liquid equilibrium in alcohol/water/salt systems. <i>Journal of Chemical & Che</i>	2.8	53	
366	Scheduling of serial multiproduct batch processes via simulated annealing. <i>Computers and Chemical Engineering</i> , 1990 , 14, 1351-1362	4	53	
365	Examining the rheology of 9-octylheptadecane to giga-pascal pressures. <i>Journal of Chemical Physics</i> , 2001 , 114, 1887-1891	3.9	52	
364	Algorithmic efficiency of simulated annealing for heat exchanger network design. <i>Computers and Chemical Engineering</i> , 1990 , 14, 1039-1050	4	52	
363	Molecular-Based Modeling of Water and Aqueous Solutions at Supercritical Conditions. <i>Advances in Chemical Physics</i> , 2007 , 115-205		51	
362	Vaporllquid equilibrium simulations of the SCPDP model of water. <i>Chemical Physics Letters</i> , 2002 , 357, 189-194	2.5	50	
361	Molecular dynamics simulation of the limiting conductance of NaCl in supercritical water. <i>Chemical Physics Letters</i> , 1998 , 293, 289-294	2.5	48	
360	Densification of Ionic Liquid Molecules within a Hierarchical Nanoporous Carbon Structure Revealed by Small-Angle Scattering and Molecular Dynamics Simulation. <i>Chemistry of Materials</i> , 2014 , 26, 1144-1153	9.6	47	
359	Perturbation Expansion of Alt's Cell Balance Equations Reduces to Segel's One-Dimensional Equations for Shallow Chemoattractant Gradients. <i>SIAM Journal on Applied Mathematics</i> , 1998 , 59, 35-5	7 ^{1.8}	47	
358	In Situ Electrochemical Dilatometry of Onion-Like Carbon and Carbon Black. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1897-A1903	3.9	46	
357	Molecular Simulation Study of Tetraalkylammonium Halides. 1. Solvation Structure and Hydrogen Bonding in Aqueous Solutions. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 3818-3826	3.4	46	
356	Anomalies in the Solubility of Alkanes in Near-Critical Water. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 12307-12314	3.4	46	
355	Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water. <i>Journal of Chemical Physics</i> , 2000 , 112, 864-869	3.9	46	
354	Temperature and density effects on the high temperature ionic speciation in dilute Na+/Cll aqueous solutions. <i>Journal of Chemical Physics</i> , 1996 , 105, 9248-9257	3.9	46	

353	Solution of the Ornstein dernike equation in the vicinity of the critical point of a simple fluid. Journal of Chemical Physics, 1985 , 82, 4303-4311	3.9	46
352	Steady state simulation of planar elongation flow by nonequilibrium molecular dynamics. <i>Journal of Chemical Physics</i> , 1999 , 110, 42-45	3.9	45
351	Calculation of Viscous EHL Traction for Squalane Using Molecular Simulation and Rheometry. Tribology Letters, 2002 , 13, 251-254	2.8	44
350	Layering Behavior and Axial Phase Equilibria of Pure Water and Water + Carbon Dioxide Inside Single Wall Carbon Nanotubes. <i>Nano Letters</i> , 2002 , 2, 1427-1431	11.5	44
349	Dielectric constant of dipolar hard sphere mixtures. <i>Journal of Chemical Physics</i> , 1986 , 85, 6658-6667	3.9	44
348	Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. Journal of Physical Chemistry B, 2019 , 123, 1340-1347	3.4	44
347	Sintering of titanium dioxide nanoparticles: a comparison between molecular dynamics and phenomenological modeling. <i>Journal of Nanoparticle Research</i> , 2008 , 10, 1169-1182	2.3	43
346	Comment on Btructure and dynamics of liquid water on rutile TiO2(110)[[Physical Review B, 2012 , 85,	3.3	42
345	Effect of the Range of Interactions on the Properties of Fluids. Phase Equilibria in Pure Carbon Dioxide, Acetone, Methanol, and Water. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 7537-7546	3.4	42
344	Comment on Near critical phase behaviour of dilute mixtures Molecular Physics, 1995, 84, 41-48	1.7	42
343	Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy. <i>Scientific Reports</i> , 2016 , 6, 32389	4.9	40
342	Shear behavior of squalane and tetracosane under extreme confinement. III. Effect of confinement on viscosity. <i>Journal of Chemical Physics</i> , 1997 , 107, 10335-10343	3.9	40
341	Polarizable contributions to the surface tension of liquid water. <i>Journal of Chemical Physics</i> , 2006 , 125, 094712	3.9	40
340	Computational chemistry for molecular electronics. <i>Computational Materials Science</i> , 2003 , 28, 321-341	3.2	40
339	Solvation in high-temperature electrolyte solutions. II. Some formal results. <i>Journal of Chemical Physics</i> , 1999 , 110, 1075-1086	3.9	40
338	Solvation in high-temperature electrolyte solutions. I. Hydration shell behavior from molecular simulation. <i>Journal of Chemical Physics</i> , 1999 , 110, 1064-1074	3.9	40
337	The Electrical Double Layer of Dicationic Ionic Liquids at Onion-like Carbon Surface. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3901-3909	3.8	39
336	Shear behavior of squalane and tetracosane under extreme confinement. II. Confined film structure. <i>Journal of Chemical Physics</i> , 1997 , 107, 10327-10334	3.9	39

335	Self-assembly of 1,4-benzenedithiolate/tetrahydrofuran on a gold surface: a Monte Carlo simulation study. <i>Langmuir</i> , 2006 , 22, 4116-24	4	39	
334	The structure of water from 25°C to 457°C: comparison between neutron scattering and molecular simulation. <i>Chemical Physics</i> , 2000 , 258, 109-120	2.3	39	
333	Computer simulation of dipolar fluids. Dependence of the dielectric constant on system size: A comparative study of Ewald sum and reaction field approaches. <i>Journal of Chemical Physics</i> , 1986 , 85, 1502-1504	3.9	39	
332	Effective Interactions between Polyhedral Oligomeric Sislesquioxanes Dissolved in Normal Hexadecane from Molecular Simulation. <i>Macromolecules</i> , 2005 , 38, 8950-8959	5.5	38	
331	Gibbs ensemble simulation of phase equilibrium in the hard core two-Yukawa fluid model for the Lennard-Jones fluid. <i>Molecular Physics</i> , 1989 , 68, 629-635	1.7	38	
330	Configurational bias Gibbs ensemble Monte Carlo simulation of vapor-liquid equilibria of linear and short-branched alkanes. <i>Fluid Phase Equilibria</i> , 1997 , 141, 45-61	2.5	37	
329	Coarse-grained force field for simulating polymer-tethered silsesquioxane self-assembly in solution. <i>Journal of Chemical Physics</i> , 2007 , 127, 114102	3.9	37	
328	Simulated Water Adsorption Isotherms in Hydrophilic and Hydrophobic Cylindrical Nanopores. <i>Adsorption</i> , 2005 , 11, 397-401	2.6	37	
327	Shear viscosity of a simple fluid over a wide range of strain rates. <i>Molecular Physics</i> , 2002 , 100, 2735-273	38 .7	37	
326	Molecular Dynamics Simulation of Reverse Micelles in Supercritical Carbon Dioxide. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 4543-4554	3.9	37	
325	Computer Simulation of the Dielectric Properties of Liquid Water. <i>Molecular Simulation</i> , 1989 , 2, 89-104	1 2	37	
324	Classical dynamics description of low energy cascades in solids: Atomic ejection from solid argon. <i>Surface Science</i> , 1988 , 207, 186-206	1.8	37	
323	Auxiliary sites in the RISM approximation for molecular fluids. <i>Journal of Physics A</i> , 1981 , 14, 1483-1512		37	
322	The dielectric constant of polar hard dumb-bells. <i>Molecular Physics</i> , 1982 , 45, 1099-1112	1.7	37	
321	Aqua ions-graphene interfacial and confinement behavior: insights from isobaric-isothermal molecular dynamics. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 5918-27	2.8	36	
320	Nonequilibrium Molecular Dynamics Simulation of the Rheology of Linear and Branched Alkanes. <i>International Journal of Thermophysics</i> , 1998 , 19, 449-459	2.1	36	
319	Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 2. Self-Assembly and Aggregation Dynamics. <i>Langmuir</i> , 2001 , 17, 1784-1792	4	36	
318	Statistical mechanical models of chemical reactions. <i>Molecular Physics</i> , 1987 , 60, 1315-1342	1.7	36	

317	Solvent Polarity Governs Ion Interactions and Transport in a Solvated Room-Temperature Ionic Liquid. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 167-171	6.4	35
316	Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of cation mediation on Asp adsorption. <i>Langmuir</i> , 2012 , 28, 2799-811	4	35
315	Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2465-9	6.4	35
314	Phase Transitions of Water in Graphite and Mica Pores. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12448	B 31824 5	57 ₃₅
313	Shear dynamics of hydration layers. <i>Journal of Chemical Physics</i> , 2006 , 125, 104701	3.9	35
312	H3O+/Clllon-pair formation in high-temperature aqueous solutions. <i>Journal of Chemical Physics</i> , 2000 , 113, 8093-8100	3.9	35
311	Interplay between Molecular Simulation and Neutron Scattering in Developing New Insights into the Structure of Water <i>Industrial & Industrial & Indu</i>	3.9	35
310	Analytic solution of the molecular Ornstein Zernike equation for nonspherical molecules. Spheres with anisotropic surface adhesion. <i>Journal of Chemical Physics</i> , 1986 , 84, 1833-1842	3.9	35
309	Molecular dynamics study of alkylsilane monolayers on realistic amorphous silica surfaces. <i>Langmuir</i> , 2015 , 31, 3086-93	4	34
308	Organic-inorganic telechelic molecules: solution properties from simulations. <i>Journal of Chemical Physics</i> , 2006 , 125, 104904	3.9	34
307	Hydrogen bonding and induced dipole moments in water: predictions from the Gaussian charge polarizable model and Car-Parrinello molecular dynamics. <i>Journal of Chemical Physics</i> , 2006 , 125, 14451	9 3.9	34
306	Predicting the Newtonian viscosity of complex fluids from high strain rate molecular simulations. Journal of Chemical Physics, 2002 , 116, 3339-3342	3.9	34
305	Molecular simulation of the temperature- and density-dependence of ionic hydration in aqueous SrCl2 solutions using rigid and flexible water models. <i>Journal of Chemical Physics</i> , 1999 , 111, 5141-5149	3.9	34
304	Non-equilibrium molecular dynamics simulation of dense fluid methane. <i>Chemical Physics Letters</i> , 1986 , 129, 92-98	2.5	34
303	A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps. <i>Journal of Chemical Physics</i> , 2016 , 145, 044702	3.9	34
302	Influence of Surface Oxidation on Ion Dynamics and Capacitance in Porous and Nonporous Carbon Electrodes. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 8730-8741	3.8	34
301	Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation. <i>ACS Applied Materials & Description (110)</i> mediated by cations: the effect of surface hydroxylation. <i>ACS Applied Materials & Description (110)</i> mediated by cations: the effect of surface hydroxylation.	9.5	33
300	Resummed thermodynamic perturbation theory for central force associating potential: One-patch model. <i>Journal of Chemical Physics</i> , 2010 , 133, 044502	3.9	33

299	Residence time calculation for chemotactic bacteria within porous media. <i>Biophysical Journal</i> , 1997 , 73, 2930-6	2.9	33	
298	Mathematical models for motile bacterial transport in cylindrical tubes. <i>Journal of Theoretical Biology</i> , 1998 , 195, 481-504	2.3	33	
297	Solvation effect on kinetic rate constant of reactions in supercritical solvents. <i>AICHE Journal</i> , 1998 , 44, 667-680	3.6	33	
296	Characterizing the viscosityEemperature dependence of lubricants by molecular simulation. <i>Fluid Phase Equilibria</i> , 2001 , 183-184, 363-370	2.5	33	
295	Comment on: Molecular simulation of water along the liquid por coexistence curve from 25 °C to the critical point. <i>Journal of Chemical Physics</i> , 1992 , 96, 864-865	3.9	33	
294	On the Relationship Between Cell Balance Equations for Chemotactic Cell Populations. <i>SIAM Journal on Applied Mathematics</i> , 1992 , 52, 1426-1441	1.8	33	
293	Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 284104	1.8	32	
292	The importance of polarizability in the modeling of solubility: quantifying the effect of solute polarizability on the solubility of small nonpolar solutes in popular models of water. <i>Journal of Chemical Physics</i> , 2008 , 129, 024508	3.9	32	
291	Molecular simulations of stretching gold nanowires in solvents. <i>Nanotechnology</i> , 2007 , 18, 424007	3.4	32	
290	Molecular dynamics study of carbon nanotube oscillators revisited. <i>Journal of Chemical Physics</i> , 2006 , 124, 134705	3.9	32	
289	The calculation of viscosity of liquid n-decane and n-hexadecane by the Green-Kubo method. <i>Molecular Physics</i> , 1998 , 93, 117-122	1.7	32	
288	Molecular dynamics simulation of the rheological and dynamical properties of a model alkane fluid under confinement. <i>Journal of Chemical Physics</i> , 1999 , 111, 1273-1280	3.9	32	
287	Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. <i>PLoS ONE</i> , 2010 , 5, e9636	3.7	32	
286	Topological defects in electric double layers of ionic liquids at carbon interfaces. <i>Nano Energy</i> , 2015 , 15, 737-745	17.1	31	
285	Strain-Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes. <i>Advanced Energy Materials</i> , 2014 , 4, 1300683	21.8	31	
284	Direct evidence for fluidBolid transition of nanoconfined fluids. <i>Soft Matter</i> , 2010 , 6, 1640	3.6	31	
283	Molecular simulation study of speciation in supercritical aqueous NaCl solutions. <i>Journal of Molecular Liquids</i> , 1997 , 73-74, 361-372	6	31	
282	Solution of the polymer PercusNevick approximation for the multicomponent totally flexible sticky two-point model of polymerizing fluid. <i>Journal of Chemical Physics</i> , 1995 , 103, 3265-3267	3.9	31	

281	Atomistic simulations of highly conductive molecular transport junctions under realistic conditions. <i>Nanoscale</i> , 2013 , 5, 3654-9	7.7	30
280	Lubricant characterization by molecular simulation. <i>AICHE Journal</i> , 1997 , 43, 3260-3263	3.6	30
279	Nonequilibrium molecular dynamics study of shear and shear-free flows in simple fluids. <i>Journal of Chemical Physics</i> , 1995 , 103, 10217-10225	3.9	30
278	A general solution of the molecular Ornstein Zernike equation for spheres with anisotropic adhesion and electric multipoles. <i>Journal of Chemical Physics</i> , 1990 , 92, 3741-3747	3.9	30
277	Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces. <i>Carbon</i> , 2018 , 129, 104-118	10.4	30
276	Resummed thermodynamic perturbation theory for central force associating potential. Multi-patch models. <i>Journal of Chemical Physics</i> , 2011 , 135, 014501	3.9	29
275	Simulation of friction in nanoconfined fluids for an arbitrarily low shear rate. <i>Physical Review B</i> , 2005 , 72,	3.3	29
274	Computational insight into the capacitive performance of graphene edge planes. <i>Carbon</i> , 2017 , 116, 278-285	10.4	28
273	Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions. Journal of Physical Chemistry Letters, 2013 , 4, 887-91	6.4	28
272	A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water. <i>Carbon</i> , 2009 , 47, 2865-2874	10.4	28
271	Multicomponent mixture of charged hard-sphere chain molecules in the polymer mean-spherical approximation. <i>Journal of Chemical Physics</i> , 2001 , 115, 540-551	3.9	28
270	Toward understanding the structural heterogeneity and ion pair stability in dicationic ionic liquids. <i>Soft Matter</i> , 2014 , 10, 9193-200	3.6	27
269	Effect of branches on the structure of narrowly confined alkane fluids: n-hexadecane and 2,6,11,15-tetramethylhexadecane. <i>Journal of Chemical Physics</i> , 2001 , 114, 6464-6471	3.9	27
268	Flowshop sequencing with non-permutation schedules. <i>Computers and Chemical Engineering</i> , 1991 , 15, 601-607	4	27
267	The contribution of internal degrees of freedom to the non-Newtonian rheology of model polymer fluids. <i>Rheologica Acta</i> , 1991 , 30, 33-43	2.3	27
266	Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 11940-11950	3.4	26
265	Solvation thermodynamics of gas solubility at sub- and near-critical conditions. <i>AICHE Journal</i> , 1996 , 42, 571-584	3.6	26
264	On the relation between the Wertheim two-density integral equation theory for associating fluids and Chandler Bilbey I adanyi integral equation theory for site Bite molecular fluids. <i>Journal of Chemical Physics</i> , 1996 , 104, 3325-3328	3.9	26

(2000-1988)

263	Nonequilibrium molecular dynamics calculation of the shear viscosity of liquid water. <i>Journal of Chemical Physics</i> , 1988 , 89, 6391-6398	3.9	26	
262	Laminin-332 cleavage by matriptase alters motility parameters of prostate cancer cells. <i>Prostate</i> , 2011 , 71, 184-96	4.2	25	
261	Comparison of cation adsorption by isostructural rutile and cassiterite. <i>Langmuir</i> , 2011 , 27, 4585-93	4	25	
2 60	Interaction between benzenedithiolate and gold: classical force field for chemical bonding. <i>Journal of Chemical Physics</i> , 2005 , 122, 244721	3.9	25	
259	H3O+/Cl- Association in High-Temperature Aqueous Solutions over a Wide Range of State Conditions. A Direct Comparison between Simulation and Electrical Conductance Experiment. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2041-2046	3.4	25	
258	Brownian dynamics simulation of bead pring chain models for dilute polymer solutions in elongational flow. <i>Journal of Rheology</i> , 1995 , 39, 285-299	4.1	25	
257	Non-Iterative Constraint Dynamics Using Velocity-Explicit Verlet Methods. <i>Molecular Simulation</i> , 1996 , 18, 213-224	2	25	
256	Shear viscosity of model mixtures by nonequilibrium molecular dynamics. I. Argonlarypton mixtures. <i>Journal of Chemical Physics</i> , 1993 , 99, 3919-3925	3.9	25	
255	A Hierarchical, Component Based Approach to Screening Properties of Soft Matter. <i>Molecular Modeling and Simulation</i> , 2016 , 79-92		24	
254	Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 284106	1.8	24	
253	Thermodynamic properties and liquid-gas phase diagram of the dipolar hard-sphere fluid. <i>Europhysics Letters</i> , 2007 , 80, 56002	1.6	24	
252	On the development of a general force field for the molecular simulation of perfluoroethers. <i>Molecular Physics</i> , 2003 , 101, 2157-2169	1.7	24	
251	Effect of Electric Field on Water Confined in Graphite and Mica Pores. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 17594-17603	3.8	23	
250	Phase transitions in nanoconfined fluids: The evidence from simulation and theory. <i>AICHE Journal</i> , 2010 , 56, NA-NA	3.6	23	
249	Electrofreezing of water in molecular dynamics simulation accelerated by oscillatory shear. <i>Physical Review E</i> , 1997 , 56, R6279-R6282	2.4	23	
248	Effect of polymer chain-length polydispersity on the phase behavior of model athermal mixtures of colloids and flexible self-excluding polymers. <i>Chemical Physics Letters</i> , 2004 , 398, 489-494	2.5	23	
247	Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations. <i>Molecular Simulation</i> , 2003 , 29, 463-470	2	23	
246	A molecular dynamics study of a short-chain polyethylene melt <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2000 , 93, 101-116	2.7	23	

245	Examination of Chain Length Effects on the Solubility of Alkanes in Near-Critical and Supercritical Aqueous Solutions. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 841-847	3.4	23
244	Non-equilibrium molecular dynamics algorithm for the calculation of thermal diffusion in simple fluid mixtures. <i>Molecular Physics</i> , 1991 , 72, 893-898	1.7	23
243	Statistical mechanical models of chemical reactions. <i>Molecular Physics</i> , 1987 , 62, 65-90	1.7	23
242	Multiscale Simulation of the Synthesis, Assembly and Properties of Nanostructured Organic/Inorganic Hybrid Materials. <i>Journal of Computational and Theoretical Nanoscience</i> , 2004 , 1, 265-	273	23
241	Large-scale atomistic simulations of environmental effects on the formation and properties of molecular junctions. <i>ACS Nano</i> , 2012 , 6, 2779-89	16.7	22
240	Bimodal analysis of mammary epithelial cell migration in two dimensions. <i>Annals of Biomedical Engineering</i> , 2009 , 37, 230-45	4.7	22
239	Conductivity of molten sodium chloride in an arbitrarily weak dc electric field. <i>Journal of Chemical Physics</i> , 2005 , 123, 114505	3.9	22
238	Calculation of the vapour-liquid coexistence curve for a fluctuating point charge water model. <i>Molecular Physics</i> , 1999 , 97, 993-996	1.7	22
237	The influence of a hierarchical porous carbon network on the coherent dynamics of a nanoconfined room temperature ionic liquid: A neutron spin echo and atomistic simulation investigation. <i>Carbon</i> , 2014 , 78, 415-427	10.4	21
236	Microstructure of room temperature ionic liquids at stepped graphite electrodes. <i>AICHE Journal</i> , 2015 , 61, 3022-3028	3.6	21
235	Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency. <i>Journal of Mathematical Biology</i> , 2003 , 47, 518-46	2	21
234	Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential. <i>Applied Physics Letters</i> , 2016 , 109, 14311	13.4	21
233	Pre-Sodiated TiCT MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors. <i>ACS Nano</i> , 2021 , 15, 2994-3003	16.7	21
232	Molecular Simulation Studies on the Elongation of Gold Nanowires in Benzenedithiol. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10365-10372	3.8	20
231	The Influence of Molecular Adsorption on Elongating Gold Nanowires. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18422-18433	3.8	20
230	Molecular dynamics simulation of ss-DNA translocation between copper nanoelectrodes incorporating electrode charge dynamics. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1712-7	3.4	20
229	Transient rheology of a polyethylene melt under shear. <i>Physical Review E</i> , 1999 , 60, 6956-9	2.4	20
228	Influence of the Friedel oscillations on the structure on liquid rubidium. <i>Journal of Physics F: Metal Physics</i> , 1982 , 12, 233-244		20

227	Formalizing atom-typing and the dissemination of force fields with foyer. <i>Computational Materials Science</i> , 2019 , 167, 215-227	3.2	19
226	A computational study of dicationic ionic liquids/COIInterfaces. <i>Langmuir</i> , 2015 , 31, 2447-54	4	19
225	Yukawa sticky m-point model of associating fluid. <i>Journal of Chemical Physics</i> , 2003 , 118, 6437-6445	3.9	19
224	Hydrophobic hydration at the level of primitive models. II: Large solutes and water restructuring. <i>Molecular Physics</i> , 2002 , 100, 2189-2200	1.7	19
223	Pair approximation for polarization interaction: efficient method for Monte Carlo simulations of polarizable fluids. <i>Molecular Physics</i> , 2001 , 99, 349-354	1.7	19
222	Monte Carlo simulation results for the full pair correlation function of the hard dumbell fluid. <i>Molecular Physics</i> , 1981 , 43, 1471-1475	1.7	19
221	Exact asymptotic form of the site-site direct correlation function for linear triatomic molecules. <i>Molecular Physics</i> , 1982 , 46, 665-670	1.7	19
220	Tunable transition from hydration to monomer-supported lubrication in zwitterionic monolayers revealed by molecular dynamics simulation. <i>Soft Matter</i> , 2015 , 11, 3340-6	3.6	18
219	Critical Role of AnionBolvent Interactions for Dynamics of Solvent-in-Salt Solutions. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 8457-8466	3.8	18
218	Examining the phase transition behavior of amphiphilic lipids in solution using statistical temperature molecular dynamics and replica-exchange Wang-Landau methods. <i>Journal of Chemical Physics</i> , 2013 , 139, 054505	3.9	18
217	Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 22375-22386	3.8	18
216	Rate-dependent energy release mechanism of gold nanowires under elongation. <i>Journal of the American Chemical Society</i> , 2008 , 130, 17907-12	16.4	18
215	Transport Properties of Perfluoroalkanes Using Molecular Dynamics Simulation: Comparison of United- and Explicit-Atom Models. <i>Industrial & Explicit Research</i> , 2003 , 42, 6956-6961	3.9	18
214	Effect of three-body forces on the shear viscosity of liquid argon. <i>Journal of Chemical Physics</i> , 1994 , 101, 6206-6209	3.9	18
213	Molecular-dynamics simulation of prompt sputtering of a molecular solid at high excitation densities. <i>Physical Review B</i> , 1991 , 43, 12707-12714	3.3	18
212	Classical dynamics description of low energy cascades in solids: Atomic ejection from amorphous argon. <i>Surface Science</i> , 1989 , 222, 491-498	1.8	18
211	Analytic studies of the hard dumbell fluid. <i>Molecular Physics</i> , 1983 , 49, 1103-1120	1.7	18
210	Surface Strain Effects on the Water G raphene Interfacial and Confinement Behavior. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 19701-19711	3.8	17

209	Surface Corrugation Effects on the Water Traphene Interfacial and Confinement Behavior. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23875-23886	3.8	17
208	Investigation of bone resorption within a cortical basic multicellular unit using a lattice-based computational model. <i>Bone</i> , 2012 , 50, 378-89	4.7	17
207	Charging properties of cassiterite (alpha-SnO(2)) surfaces in NaCl and RbCl ionic media. <i>Langmuir</i> , 2009 , 25, 10852-62	4	17
206	Solvation in high-temperature electrolyte solutions. III. Integral equation calculations and interpretation of experimental data. <i>Journal of Chemical Physics</i> , 2001 , 114, 3575-3585	3.9	17
205	Applying Molecular and Materials Modeling 2002,		17
204	Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. <i>Advanced Functional Materials</i> , 2021 , 31, 2104007	, 15.6	17
203	Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation. <i>Langmuir</i> , 2017 , 33, 11270-11280	4	16
202	Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivity data. <i>Journal of Synchrotron Radiation</i> , 2011 , 18, 257-65	2.4	16
201	Equation of state and liquid-vapor equilibria of one- and two-Yukawa hard-sphere chain fluids: theory and simulation. <i>Journal of Chemical Physics</i> , 2004 , 121, 8128-37	3.9	16
200	Structural transition and solid-like behavior of alkane films confined in nano-spacing. <i>Fluid Phase Equilibria</i> , 2001 , 183-184, 381-387	2.5	16
199	Development of a force field for molecular simulation of the phase equilibria of perfluoromethylpropyl ether. <i>Molecular Physics</i> , 2002 , 100, 265-272	1.7	16
198	Vapor-Liquid Equilibrium and Density Measurements of Alkylammonium Bromide + Propanol + Water Systems. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 792-798	2.8	16
197	Numerical Solution of Transport Equations for Bacterial Chemotaxis: Effect of Discretization of Directional Motion. <i>SIAM Journal on Applied Mathematics</i> , 1996 , 56, 1639-1663	1.8	16
196	Phase diagram for the Lennard-Jones fluid modelled by the hard-core Yukawa fluid. <i>Molecular Physics</i> , 1996 , 87, 1459-1462	1.7	16
195	Shear viscosity of model mixtures by nonequilibrium molecular dynamics. II. Effect of dipolar interactions. <i>Journal of Chemical Physics</i> , 1996 , 105, 2044-2055	3.9	16
194	Comment on: Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field. <i>Journal of Chemical Physics</i> , 1991 , 95, 8675-8676	3.9	16
193	Evaluation of the SSC/LHNC, SSCF and PY approximations for short ranged, anisotropic potentials. <i>Molecular Physics</i> , 1983 , 48, 1177-1207	1.7	16
192	Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors. <i>Electrochimica Acta</i> , 2018 , 283, 882-893	6.7	15

(2011-2019)

191	Ion Pairing Controls Physical Properties of Ionic Liquid-Solvent Mixtures. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 9944-9955	3.4	15	
190	Adsorption of Chain Molecules in Slit-Shaped Pores: Development of a SAFT-FMT-DFT Approach. Journal of Physical Chemistry C, 2013 , 117, 21337-21350	3.8	15	
189	Rotational and Translational Dynamics of N-Butyl-N-methylpiperidinium Trifluoromethanesulfonimide Ionic Liquids Studied by NMR and MD Simulations. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20779-20786	3.8	15	
188	Modeling solution of flexible polyelectrolyte in explicit solvent. <i>Chemical Physics Letters</i> , 2007 , 438, 238	3- 2 . 4 3	15	
187	The Effect of Pore Connectivity on Water Adsorption Isotherms in Non-Activated Graphitic Nanopores. <i>Adsorption</i> , 2005 , 11, 337-341	2.6	15	
186	Molecular approach to high-temperature solvation. Formal, integral equation and experimental results. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, 3585-3593	1.8	15	
185	Discriminating between Correlations of Experimental Viscosity Data for Perfluorobutane Using Molecular Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 473-475	3.9	15	
184	Solution of the ChandlerBilbeyDadanyi equation for the multicomponent hard-sphere siteBite molecular fluid: PercusBevick approximation. <i>Journal of Chemical Physics</i> , 1996 , 105, 2011-2019	3.9	15	
183	Computer simulation of vapor-liquid equilibrium in mixed solvent electrolyte solutions. <i>Fluid Phase Equilibria</i> , 1993 , 83, 213-222	2.5	15	
182	Analytic solution of the RISM equation for symmetric diatomics with Yukawa closure. <i>Molecular Physics</i> , 1981 , 43, 1299-1309	1.7	15	
181	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. <i>Nature Energy</i> , 2022 , 7, 222-228	62.3	15	
180	Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 4152-9	3.6	14	
179	Role of polytetrahedral structures in the elongation and rupture of gold nanowires. <i>ACS Nano</i> , 2011 , 5, 10065-73	16.7	14	
178	Aggregation of POSS monomers in liquid hexane: a molecular-simulation study. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12248-56	3.4	14	
177	Non-equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite. <i>Fluid Phase Equilibria</i> , 2002 , 194-197, 309-317	2.5	14	
176	On the Molecular Dynamics Algorithm for Gibbs Ensemble Simulation. <i>Molecular Simulation</i> , 1996 , 17, 21-25	2	14	
175	Brownian dynamics simulation of model polymer fluids in shear flow. I. Dumbbell models. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 1992 , 41, 275-288	2.7	14	
174	Network Forming Fluids: Yukawa Square-Well m-Point Model. <i>Journal of Statistical Physics</i> , 2011 , 145, 481-506	1.5	13	

173	Thermodynamics and kinetics of ion speciation in supercritical aqueous solutions: a molecular-based study. <i>Fluid Phase Equilibria</i> , 1998 , 150-151, 107-115	2.5	13
172	Single-strand DNA molecule translocation through nanoelectrode gaps. <i>Nanotechnology</i> , 2007 , 18, 424	10384	13
171	Pair approximation for polarization interaction and adiabatic nuclear and electronic sampling method for fluids with dipole polarizability. <i>Molecular Physics</i> , 2002 , 100, 2703-2717	1.7	13
170	Non-equilibrium molecular dynamics calculation of the transport properties of carbon dioxide. <i>Fluid Phase Equilibria</i> , 1989 , 53, 191-198	2.5	13
169	Analytic studies of the hard dumbell fluid. <i>Molecular Physics</i> , 1984 , 51, 289-311	1.7	13
168	MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 1779-1793	6.4	12
167	Towards Molecular Simulations that are Transparent, Reproducible, Usable By Others, and Extensible (TRUE). <i>Molecular Physics</i> , 2020 , 118,	1.7	12
166	Influence of Surface Morphology on the Shear-Induced Wear of Alkylsilane Monolayers: Molecular Dynamics Study. <i>Langmuir</i> , 2016 , 32, 2348-59	4	12
165	Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. <i>ACS Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	12
164	Prediction of n-Alkane Adsorption on Activated Carbon Using the SAFTEMTDFT Approach. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1457-1463	3.8	12
163	Confined fluid and the fluid-solid transition: Evidence from absolute free energy calculations. <i>Physical Review B</i> , 2012 , 86,	3.3	12
162	Fourier space approach to the classical density functional theory for multi-Yukawa and square-well fluids. <i>Journal of Chemical Physics</i> , 2012 , 137, 104104	3.9	12
161	Molecular simulation of supercritical water and aqueous solutions. <i>Journal of Physics Condensed Matter</i> , 1996 , 8, 9281-9287	1.8	12
160	Controlled Translocation of DNA Segments through Nanoelectrode Gaps from Molecular Dynamics. Journal of Physical Chemistry C, 2008 , 112, 8-12	3.8	12
159	Phase coexistence in polydisperse charged hard-sphere fluids: mean spherical approximation. Journal of Chemical Physics, 2004 , 120, 10133-45	3.9	12
158	On the determination of orientational configurational temperature from computer simulation. <i>Journal of Chemical Physics</i> , 2001 , 114, 6514-6517	3.9	12
157	Structural and thermodynamic properties of a multicomponent freely jointed hard sphere multi-Yukawa chain fluid. <i>Molecular Physics</i> , 2002 , 100, 2499-2517	1.7	12
156	The Rheology of n-Butane and i-Butane by Non-Equilibrium Molecular Dynamics Simulations. <i>Molecular Simulation</i> , 1996 , 16, 229-247	2	12

155	Vapor-Liquid Equilibria and Salt Apparent Molar Volumes of the Water + 2-Propanol + Tetrabutylammonium Bromide System. <i>Journal of Chemical & Data</i> , 1994, 39, 506-509	2.8	12	
154	Nonequilibrium molecular dynamics study of molecular contributions to the thermal conductivity of carbon dioxide. <i>Molecular Physics</i> , 1992 , 75, 1345-1356	1.7	12	
153	Gibbs ensemble simulation of mixed solvent electrolyte solutions. Fluid Phase Equilibria, 1993, 86, 147-	1723 ₅	12	
152	Solution of the Ornstein-Zernike equation for a soft-core Yukawa fluid. <i>Journal of Statistical Physics</i> , 1979 , 21, 659-667	1.5	12	
151	Exact solution of the mean spherical approximation for a model liquid metal potential. I. Method of solution. <i>Journal of Physics F: Metal Physics</i> , 1979 , 9, 1477-1488		12	
150	Influence of humidity on performance and microscopic dynamics of an ionic liquid in supercapacitor. <i>Physical Review Materials</i> , 2017 , 1,	3.2	12	
149	Liquid-gas phase behavior of Stockmayer fluid with high dipolar moment. <i>Condensed Matter Physics</i> , 2007 , 10, 553	1.3	12	
148	Human serum albumin interactions with C60 fullerene studied by spectroscopy, small-angle neutron scattering, and molecular dynamics simulations. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	11	
147	Computer Simulations of the Static Scattering from Model Polymer Blends. <i>Macromolecules</i> , 1997 , 30, 3375-3382	5.5	11	
146	Fluctuations close to equilibrium. <i>Physical Review E</i> , 1995 , 52, 2198-2203	2.4	11	
145	Compartmented mode workstation: prototype highlights. <i>IEEE Transactions on Software Engineering</i> , 1990 , 16, 608-618	3.5	11	
144	Non-equilibrium molecular dynamics calculation of the shear viscosity of liquid rubidium. <i>Journal of Physics F: Metal Physics</i> , 1987 , 17, 593-604		11	
143	The role of the pair potential in determining the structure factor of liquid rubidium. <i>Journal of Physics F: Metal Physics</i> , 1987 , 17, 797-807		11	
142	Humidity Exposure Enhances Microscopic Mobility in a Room-Temperature Ionic Liquid in MXene. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 27561-27566	3.8	11	
141	Synthesis of quinazolines over recyclable Fe3O4@SiO2-PrNH2-Fe3+ nanoparticles: A green, efficient, and solvent-free protocol. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4573	3.1	11	
140	Nucleophilicity of cyclic conjugated silylenes using DFT method. <i>Journal of Physical Organic Chemistry</i> , 2019 , 32, e3956	2.1	10	
139	Adsorption of Water on TiO2 and SnO2 Surfaces: Molecular Dynamics Study. <i>Collection of Czechoslovak Chemical Communications</i> , 2008 , 73, 575-589		10	
138	Microstructure of Water At the Level of Three-particle Correlation Functions As Predicted by Classical Intermolecular Models. <i>Molecular Simulation</i> , 2003 , 29, 13-21	2	10	

137	Square-well chain molecules: a semi-empirical equation of state and Monte Carlo simulation data. <i>Fluid Phase Equilibria</i> , 2004 , 221, 63-72	2.5	10
136	Thermodynamic properties of freely-jointed hard-sphere multi-Yukawa chain fluids: theory and simulation. <i>Fluid Phase Equilibria</i> , 2002 , 194-197, 185-196	2.5	10
135	Applications of Integral Equation Calculations to High-Temperature Solvation Phenomena. <i>Journal of Statistical Physics</i> , 2000 , 100, 167-199	1.5	10
134	Scheduling of multiple products on parallel units with tardiness penalties using simulated annealing. <i>Computers and Chemical Engineering</i> , 1995 , 19, 1069-1076	4	10
133	Solvation structure, hydrogen bonding, and ion pairing in dilute supercritical aqueous NaCl mixtures. <i>International Journal of Thermophysics</i> , 1996 , 17, 147-156	2.1	10
132	Nonequilibrium molecular dynamics calculation of the shear viscosity of carbon dioxide. <i>International Journal of Thermophysics</i> , 1989 , 10, 929-940	2.1	10
131	Use of the Yukawa fluid as the reference system in perturbation theory. <i>Chemical Physics Letters</i> , 1979 , 66, 278-282	2.5	10
130	Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics. <i>Journal of Physical Chemistry C</i> , 2019 ,	3.8	9
129	Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 19757-	64 ⁶	9
128	An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics. <i>Journal of Carbon Research</i> , 2017 , 3, 32	3.3	9
127	Examining the aggregation behavior of polymer grafted nanoparticles using molecular simulation and theory. <i>Journal of Chemical Physics</i> , 2015 , 143, 054904	3.9	9
126	Simulating Phase Equilibria using Wang-Landau-Transition Matrix Monte Carlo. <i>Journal of Physics: Conference Series</i> , 2014 , 487, 012002	0.3	9
125	Bimodal analysis reveals a general scaling law governing nondirected and chemotactic cell motility. <i>Biophysical Journal</i> , 2010 , 99, 367-76	2.9	9
124	Nanorheology of liquid alkanes. <i>Fluid Phase Equilibria</i> , 1998 , 150-151, 125-131	2.5	9
123	Molecular dynamics simulation of ice XII. Chemical Physics Letters, 1999, 300, 359-363	2.5	9
122	Self-diffusion in strongly driven flows: A non-equilibrium molecular dynamics study. <i>Molecular Physics</i> , 1995 , 86, 1307-1314	1.7	9
121	Non-Equilibrium Molecular Dynamics Calculation of the Shear Viscosity of Carbon Dioxide/Ethane Mixtures. <i>Molecular Simulation</i> , 1993 , 10, 1-11	2	9
120	Solution of the Percus-Yevick equation in the coexistence region of a simple fluid. <i>International Journal of Thermophysics</i> , 1985 , 6, 573-584	2.1	9

119	Solution of the site-site Ornstein-Zernike equation for nonideal dipolar spheres. <i>The Journal of Physical Chemistry</i> , 1982 , 86, 1696-1700		9	
118	Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces. <i>Applied Surface Science</i> , 2016 , 384, 36-44	6.7	9	
117	Identifying Water-Anion Correlated Motion in Aqueous Solutions through Van Hove Functions. Journal of Physical Chemistry Letters, 2019 , 10, 7119-7125	6.4	8	
116	Fluctuations and correlations in physical and biological nanosystems: the tale is in the tails. <i>ACS Nano</i> , 2011 , 5, 2425-32	16.7	8	
115	Directional dependence of the random kinetic energy in planar Couette flow. <i>Molecular Physics</i> , 1997 , 90, 35-41	1.7	8	
114	Phase coexistence in polydisperse athermal polymer-colloidal mixture. <i>Journal of Chemical Physics</i> , 2008 , 128, 154907	3.9	8	
113	Phase coexistence in a polydisperse charged hard-sphere fluid: polymer mean spherical approximation. <i>Journal of Chemical Physics</i> , 2005 , 123, 124501	3.9	8	
112	H3O+/Clilon pairing in hydrothermal solutions by simulation and electrical conductance. A review. <i>Journal of Molecular Liquids</i> , 2003 , 103-104, 235-248	6	8	
111	Distribution functions of a simple fluid under shear: low shear rates. <i>Physical Review E</i> , 1999 , 60, 1716-2	232.4	8	
110	Relationship between McQuarrie and Helfand equations for the determination of shear viscosity from equilibrium molecular dynamics. <i>Physical Review E</i> , 1993 , 47, 1702-1711	2.4	8	
109	An analytic model for aqueous electrolyte solutions based on fluctuation solution theory. <i>Fluid Phase Equilibria</i> , 1988 , 39, 227-266	2.5	8	
108	RESEARCH NOTE An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. <i>Molecular Physics</i> , 1996 , 88, 1665-1670	1.7	8	
107	Diffusivity and Structure of Room Temperature Ionic Liquid in Various Organic Solvents. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 9931-9937	3.4	8	
106	Integral equation theory for a mixture of spherical and patchy colloids: analytical description. <i>Soft Matter</i> , 2020 , 16, 3456-3465	3.6	7	
105	Web- and Cloud-based Software Infrastructure for Materials Design. <i>Procedia Computer Science</i> , 2014 , 29, 2034-2044	1.6	7	
104	Probing the Statistical Validity of the Ductile-to-Brittle Transition in Metallic Nanowires Using GPU Computing. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 5558-66	6.4	7	
103	Examination of the phase transition behavior of nano-confined fluids by statistical temperature molecular dynamics. <i>Journal of Chemical Physics</i> , 2015 , 143, 054504	3.9	7	
102	Comparative studies on the structure and diffusion dynamics of aqueous and nonpolar liquid films under nanometers confinement. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2010 , 18, 034007	2	7	

101	The global turning probability density function for motile bacteria and its applications. <i>Journal of Theoretical Biology</i> , 1998 , 195, 139-55	2.3	7
100	Phase coexistence in polydisperse mixture of hard-sphere colloidal and flexible chain particles. <i>Chemical Physics Letters</i> , 2007 , 443, 243-247	2.5	7
99	Protrusion of a Virtual Model Lamellipodium by Actin Polymerization: A Coarse-grained Langevin Dynamics Model. <i>Journal of Statistical Physics</i> , 2008 , 133, 79-100	1.5	7
98	Molecular dynamics simulation of inorganic ions in PEO aqueous solution. <i>Molecular Simulation</i> , 2007 , 33, 1255-1260	2	7
97	On the determination of the vaporliquid envelope for polarizable models by Monte Carlo simulation. <i>Fluid Phase Equilibria</i> , 2001 , 183-184, 295-300	2.5	7
96	Towards a computational chemical potential for nonequilibrium steady-state systems. <i>Physical Review E</i> , 1999 , 60, 5522-7	2.4	7
95	Shear viscosity of liquid rubidium at the triple point. <i>Journal of Physics F: Metal Physics</i> , 1988 , 18, 1439-1	447	7
94	Investigation of the Impact of Cross-Polymerization on the Structural and Frictional Properties of Alkylsilane Monolayers Using Molecular Simulation. <i>Nanomaterials</i> , 2019 , 9,	5.4	6
93	Computational Modeling of Particle Hydrodynamics and Charging Process for the Flowable Electrodes of Carbon Slurry. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2643-A2653	3.9	6
92	An improved thermodynamic perturbation theory for square-well m-point model of the patchy colloids. <i>Journal of Chemical Physics</i> , 2012 , 137, 244910	3.9	6
91	Neuroimaging assessment of memory-related brain structures in a rat model of acute space-like radiation. <i>Journal of Magnetic Resonance Imaging</i> , 2009 , 29, 785-92	5.6	6
90	Molecular dynamics simulation of realistic systems. Fluid Phase Equilibria, 1996, 116, 237-248	2.5	6
89	Towards the atomistic simulation of phase coexistence in nonequilibrium systems. <i>Journal of Chemical Physics</i> , 1996 , 105, 2378-2390	3.9	6
88	A new method for the numerical solution of integral equation approximations. <i>International Journal of Thermophysics</i> , 1990 , 11, 97-107	2.1	6
87	Random flights in Euclidean space. I. General analysis and results for flights with prescribed hit expectance density about the origin. <i>Journal of Statistical Physics</i> , 1983 , 33, 709-751	1.5	6
86	A Test of Computer Simulation of Low Density Gases. <i>Physics and Chemistry of Liquids</i> , 1982 , 11, 315-32.	51.5	6
85	Open-source molecular modeling software in chemical engineering focusing on the Molecular Simulation Design Framework. <i>AICHE Journal</i> , 2021 , 67, e17206	3.6	6
84	Molecular investigations of tripeptide adsorption onto TiO2 surfaces: Synergetic effects of surface nanostructure, hydroxylation and bioactive ions. <i>Applied Surface Science</i> , 2020 , 512, 145713	6.7	5

83	Enaminones over recyclable nano-CoFe2O4: a highly efficient solvent-free green protocol. <i>Research on Chemical Intermediates</i> , 2018 , 44, 5787-5799	2.8	5
82	Molecular Investigation of the Initial Nucleation of Calcium Phosphate on TiO2 Substrate: The Effects of Surface Nanotopographies. <i>Crystal Growth and Design</i> , 2018 , 18, 3283-3290	3.5	5
81	Microscopic Dynamics in an Ionic Liquid Augmented with Organic Solvents. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 19354-19361	3.8	5
80	Towards the phase diagram of a polydisperse mixture of charged hard spheres. <i>Europhysics Letters</i> , 2005 , 72, 96-102	1.6	5
79	The Rheology of n-Decane and 4-Propyl Heptane by Non Equilibrium Molecular Dynamics Simulations. <i>Molecular Simulation</i> , 1998 , 21, 27-39	2	5
78	Simulation of bead-and-spring chain models for semidilute polymer solutions in shear flow. <i>International Journal of Thermophysics</i> , 1994 , 15, 1085-1091	2.1	5
77	Analytic studies of the hard dumbell fluid. <i>Molecular Physics</i> , 1984 , 53, 849-863	1.7	5
76	Addition of Chloroform in a Solvent-in-Salt Electrolyte: Outcomes in the Microscopic Dynamics in Bulk and Confinement. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 22366-22375	3.8	5
75	Open-source molecular modeling software in chemical engineering. <i>Current Opinion in Chemical Engineering</i> , 2019 , 23, 99-105	5.4	4
74	A Wang-Landau study of a lattice model for lipid bilayer self-assembly. <i>Journal of Chemical Physics</i> , 2012 , 137, 144901	3.9	4
73	Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems. <i>Journal of Chemical Physics</i> , 2012 , 137, 204105	3.9	4
72	The importance of polarisability in the modelling of solubility: quantifying the effect of charged co-solutes on the solubility of small non-polar solutes. <i>Molecular Simulation</i> , 2011 , 37, 299-309	2	4
71	Ion Adsorption on Metal Oxide Surfaces to Hydrothermal Conditions ECS Transactions, 2007, 11, 167-	18 <u>0</u>	4
70	Molecular Dynamics Simulation of Limiting Conductance for Na2+, Cl2[INa°, and Cl° in Supercritical Water. <i>Molecular Simulation</i> , 2001 , 27, 199-213	2	4
69	Keith E. Gubbins: A celebration of statistical mechanics. <i>Molecular Physics</i> , 2002 , 100, 2003-2016	1.7	4
68	Spatial effect of tumbling frequencies for motile bacteria on cell balance equations. <i>Chemical Engineering Science</i> , 1999 , 54, 593-617	4.4	4
67	Structure of Mixed Solvent Electrolyte Solutions via Gibbs Ensemble Monte Carlo Simulation. <i>Molecular Simulation</i> , 1993 , 11, 163-175	2	4
66	Nonequilibrium molecular dynamics of liquid crystals. <i>International Journal of Thermophysics</i> , 1994 , 15, 1125-1134	2.1	4

65	Evaluation of the CPY and PYX approximations for short ranged anisotropic potentials. <i>Molecular Physics</i> , 1983 , 50, 1133-1140	1.7	4
64	Molecular Simulation of Near-Critical and Supercritical Fluids 1994 , 387-409		4
63	Melting upon cooling and freezing upon heating: fluid-solid phase diagram for Ivejk-Hallk model of dimerizing hard spheres. <i>Soft Matter</i> , 2017 , 13, 1156-1160	3.6	3
62	Phase Equilibria of Polydisperse Square-Well Chain Fluid Confined in Random Porous Media: TPT of Wertheim and Scaled Particle Theory. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 5458-5465	3.4	3
61	A model-integrated computing approach to nanomaterials simulation. <i>Theoretical Chemistry Accounts</i> , 2013 , 132, 1	1.9	3
60	Effect of oscillatory shear on the fluid s olid phase transition of supercooled water. <i>Fluid Phase Equilibria</i> , 1998 , 150-151, 141-149	2.5	3
59	Classical molecular simulations of complex, industrially-important systems on the intel paragon. <i>Computers and Mathematics With Applications</i> , 1998 , 35, 73-84	2.7	3
58	Molecular simulations of DNA transport in solution. <i>Molecular Simulation</i> , 2007 , 33, 399-403	2	3
57	Adsorption isotherm of a Lennard-Jones nitrogen in a carbon slitlike pore. <i>Molecular Physics</i> , 2001 , 99, 1099-1105	1.7	3
56	Chain length effects on aqueous alkane solubility near the solvent\(\text{\textit{g}}\) critical point. Fluid Phase Equilibria, 2001, 183-184, 289-294	2.5	3
55	Phase diagram for the dimerizing hard-core Yukawa fluid. <i>Molecular Physics</i> , 1996 , 87, 249-255	1.7	3
54	An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow. <i>Molecular Physics</i> , 1996 , 88, 1665-1670	1.7	3
53	Non-equilibrium molecular dynamics approach to the rheology of model polymer fluids. <i>Fluid Phase Equilibria</i> , 1993 , 88, 99-113	2.5	3
52	Solution of the Ornstein-Zernike equation for a softcore Yukawa fluid. II. Numerical results. <i>Journal of Statistical Physics</i> , 1981 , 24, 389-401	1.5	3
51	On the solution of the Boltzmann equation for Maxwellian molecules. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1982 , 111, 288-300	3.3	3
50	The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors 1996 ,		3
49	Borasilylenes in Focus: Topological Effects of Nitrogen Atoms by DFT. Silicon, 2020, 13, 3377	2.4	3
48	Gallic acid-functionalized magnetic nanoparticles: a convenient and green approach for synthesis of Eminonitriles under solvent-free conditions. <i>Research on Chemical Intermediates</i> , 2019 , 45, 303-314	2.8	3

47	Integral equation theory for mixtures of spherical and patchy colloids. 2. Numerical results. <i>Soft Matter</i> , 2021 , 17, 3513-3519	3.6	3
46	Mobilities of polydisperse hard spheres near a no-slip wall. <i>Computers and Fluids</i> , 2018 , 176, 40-50	2.8	3
45	Investigating the Accuracy of Water Models through the Van Hove Correlation Function. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 5992-6005	6.4	3
44	Mathematical Models of Bacterial Chemotaxis 1998 , 228-269		3
43	A Transferable, Multi-Resolution Coarse-Grained Model for Amorphous Silica Nanoparticles. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 3260-3271	6.4	2
42	Electrophoresis of ssDNA through nanoelectrode gaps from molecular dynamics: impact of gap width and chain length. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 12851-8	3.4	2
41	Solution of the mean spherical approximation for polydisperse multi-Yukawa hard-sphere fluid mixture using orthogonal polynomial expansions. <i>Journal of Chemical Physics</i> , 2006 , 124, 114509	3.9	2
40	Liquid№apor coexistence by molecular dynamics simulation. <i>Journal of Chemical Physics</i> , 2000 , 112, 3516	5-3.522	2
39	ROLE OF THE POLES IN DETERMINING THE STRUCTURE FACTOR OF A SIMPLE FLUID. <i>Journal of Physics A</i> , 1983 , 16, 4269-4273		2
38	Solution of the Ornstein-Zernike equation for a soft-core Yukawa fluid. III. A restricted model for electrolytes and fused salts. <i>Journal of Statistical Physics</i> , 1981 , 24, 405-412	1.5	2
37	Beyond Simple Dilution: Superior Conductivities from Cosolvation of Acetonitrile/LiTFSI Concentrated Solution with Acetone. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 2788-2796	3.8	2
36	Liquid-gas phase behavior of polydisperse dipolar hard-sphere fluid: Extended thermodynamic perturbation theory for central force associating potential. <i>Condensed Matter Physics</i> , 2012 , 15, 23605	1.3	2
35	Introduction to Integral Equation Approximations with Application to Near-Critical and Supercritical Fluids 1994 , 287-311		2
34	MoSDeF Cassandra: A complete Python interface for the Cassandra Monte Carlo software. <i>Journal of Computational Chemistry</i> , 2021 , 42, 1321-1331	3.5	2
33	Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces. <i>Science China Chemistry</i> , 2016 , 59, 594-600	7.9	2
32	High-throughput screening of tribological properties of monolayer films using molecular dynamics and machine learning <i>Journal of Chemical Physics</i> , 2022 , 156, 154902	3.9	2
31	Compounding effects of fluid confinement and surface strain on the wetdry transition, thermodynamic response, and dynamics of watergraphene systems. <i>Molecular Physics</i> , 2015 , 113, 1033-	1042	1
30	Audibilization: Data Analysis by Ear. Journal of Chemical Theory and Computation, 2014, 10, 1387-94	6.4	1

29	Extremum Behavior of Fluctuation Amplitudes Close to Equilibrium. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9149-9151		1
28	Molecular simulation of complex systems using massively parallel supercomputers. <i>Fluid Phase Equilibria</i> , 1998 , 144, 331-342	2.5	1
27	Third Foundations of Molecular Modeling and Simulation Conference FOMMS 2006. <i>Molecular Physics</i> , 2007 , 105, 137-137	1.7	1
26	Hydration Structure and Shear Viscosity of Water Nanoconfined Between Mica Surfaces 2006 , 505		1
25	Foundations of Molecular Modelling and Simulation FOMMS 2003 Keystone Resort, Colorado, USA 611 July 2003. <i>Molecular Physics</i> , 2004 , 102, 137-137	1.7	1
24	Adsorption properties of a colloid-polymer mixture confined in a slit pore. <i>Physical Review E</i> , 2001 , 64, 041507	2.4	1
23	Solvation in high-temperature aqueous electrolyte solutions. <i>Journal of Molecular Liquids</i> , 2000 , 87, 233	3 -2 42	1
22	A new perturbation theory for potentials with a soft core. <i>Chemical Physics Letters</i> , 1981 , 83, 120-124	2.5	1
21	Science: Molecular Simulations and Mesoscale Methods 2002 , 23-47		1
20	Novel triplet germylenes in focus: normal vs. abnormal triplet exocyclic tetrazol-5-vinylidene germylenes at DFT. <i>Journal of Molecular Modeling</i> , 2019 , 25, 371	2	1
19	Engineering the Interlayer Spacing by Pre-Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid (Adv. Funct. Mater. 33/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170246	15.6	1
18	Empty liquid state and re-entrant phase behavior of the patchy colloids confined in porous media <i>Journal of Chemical Physics</i> , 2022 , 156, 161102	3.9	1
17	Shear Viscosity of Model Mixtures by Nonequilibrium Molecular Dynamics III. Effect of Quadrupolar Interactions. <i>Molecular Simulation</i> , 2001 , 27, 115-137	2	0
16	Shear Viscosity of Model Mixtures by Nonequilibrium Molecular Dynamics. IV. Effect of Molecular	2	O
	Shape. Molecular Simulation, 2001 , 27, 139-155	_	
15	Thermodynamic properties of an asymmetric fluid mixture with adhesive hard sphere Yukawa interaction in the mean spherical approximation. <i>Molecular Physics</i> , 1998 , 93, 73-78	1.7	0
15 14	Thermodynamic properties of an asymmetric fluid mixture with adhesive hard sphere Yukawa		0
	Thermodynamic properties of an asymmetric fluid mixture with adhesive hard sphere Yukawa interaction in the mean spherical approximation. <i>Molecular Physics</i> , 1998 , 93, 73-78 A mathematical model for Escherichia coli chemotaxis to competing stimuli. <i>Biotechnology and</i>	1.7	

LIST OF PUBLICATIONS

11	Phase behavior of a simple model of ferrocolloidal fluid. <i>Chemical Physics Letters</i> , 2011 , 503, 226-230	2.5
10	Third Foundations of Molecular Modeling and Simulation Conference FOMMS 2006. <i>Molecular Simulation</i> , 2007 , 33, 277-277	2
9	A numerical method for solving a scalar advection-dominated transport equation with concentration-dependent sources. <i>Computers and Chemical Engineering</i> , 2003 , 27, 1405-1419	4
8	Integrated multiscale modeling of molecular computing devices. <i>Journal of Physics: Conference Series</i> , 2005 , 16, 269-272	0.3
7	Fifth Liblice Conference on the Statistical Mechanics of Liquids (June 71/2, 1998, [Zcirc]elezn Ruda, [umava National Park, Czech Republic). <i>Molecular Physics</i> , 1999 , 96, 1583-1585	1.7
6	Unified expression for the calculation of thermal conductivity in the canonical ensemble. <i>Molecular Physics</i> , 1993 , 78, 791-797	1.7
5	Molecular Simulation of Vapor-Liquid Equilibrium in Mixed Solvent Electrolyte Solutions 1993 , 449-460)
4	Modeling of Supercapacitors 2015 , 2282-2289	
3	Effective Interaction Potentials for Coarse-Grained Simulations of Polymer-Tethered Nanoparticle Self-Assembly in Solution 2008 , 415-431	
2	Engineering for Inclusion: Empowering Individuals with Physical and Neurological Differences through Engineering Invention, Research, and Development. <i>Engineering</i> , 2021 , 7, 141-143	9.7
1	Keith E. Gubbins: A retrospective. <i>AICHE Journal</i> , 2021 , 67, e17191	3.6