Li-Juan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7068457/publications.pdf

Version: 2024-02-01

172457 206112 2,691 81 29 48 citations h-index g-index papers 83 83 83 3241 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of organosilane/ATP@HQ self-healing passivator for pyrite oxidation. Chemosphere, 2022, 287, 132342.	8.2	5
2	Competitive adsorption of methanol co-solvent and dioctyl phthalate on functionalized graphene sheet: Integrated investigation by molecular dynamics simulations and quantum chemical calculations. Journal of Colloid and Interface Science, 2022, 605, 354-363.	9.4	13
3	Inter-molecular interactions of phthalic acid esters and multi-stage sorption revealed by experimental investigations and computation simulations. Chemical Engineering Journal, 2022, 431, 134018.	12.7	10
4	Molecular-scale study of Cr(<scp>vi</scp>) adsorption onto lepidocrocite facets by EXAFS, <i>in situ</i> ATR-FTIR, theoretical frequency calculations and DFT+U techniques. Environmental Science: Nano, 2022, 9, 568-581.	4.3	6
5	Effect of Surface Functionalization and Pore Structure Type on the Release Performance of Mesoporous Silica Nanoparticles. Microporous and Mesoporous Materials, 2022, 336, 111862.	4.4	13
6	Morphological transitions of micelles induced by the block arrangements of copolymer blocks: dissipative particle dynamics simulation. Physical Chemistry Chemical Physics, 2022, 24, 10757-10764.	2.8	2
7	Molecular clusters played an important role in the adsorption of polycyclic aromatic hydrocarbons (PAHs) on carbonaceous materials. Chemosphere, 2022, 302, 134772.	8.2	2
8	Simultaneous redox transformation and removal of Cr(â¥) and As(â¢) by polyethyleneimine modified magnetic mesoporous polydopamine nanocomposite: Insights into synergistic effects and mechanisms. Journal of Hazardous Materials, 2022, 439, 129581.	12.4	12
9	Solution pH affects single, sequential and binary systems of sulfamethoxazole and cadmium adsorption by self-assembled cellulose: Promotion or inhibition?. Journal of Hazardous Materials, 2021, 402, 124084.	12.4	25
10	Key roles of electron cloud density and configuration in the adsorption of sulfonamide antibiotics on carbonaceous materials: Molecular dynamics and quantum chemical investigations. Applied Surface Science, 2021, 536, 147757.	6.1	45
11	Adsorption of Organic Compounds by Biomass Chars: Direct Role of Aromatic Condensation (Ring) Tj ETQq1 1 (Technology, 2021, 55, 1594-1603.	0.784314 10.0	rgBT /Overlock 16
12	Rapid and efficient removal of Cr(<scp>vi</scp>) by a core–shell magnetic mesoporous polydopamine nanocomposite: roles of the mesoporous structure and redox-active functional groups. Journal of Materials Chemistry A, 2021, 9, 13306-13319.	10.3	61
13	Adsorption behavior of Cd (II) on TEMPO-oxidized cellulose in inorganic/ organic complex systems. Environmental Research, 2021, 195, 110848.	7.5	28
14	Multiple adsorption systems and electron-scale insights into the high efficiency coadsorption of a novel assembled cellulose via experiments and DFT calculations. Journal of Hazardous Materials, 2021, 416, 125748.	12.4	29
15	Self-assembly of cyclic grafted copolymers with rigid rings and their potential as drug nanocarriers. Journal of Colloid and Interface Science, 2021, 597, 114-125.	9.4	8
16	Mesoporous Silica Nanoprodrug Encapsulated with Near-Infrared Absorption Dye for Photothermal Therapy Combined with Chemotherapy. ACS Applied Bio Materials, 2021, 4, 8225-8235.	4.6	7
17	Electron-Scale Insights into the Single and Coadsorption Cd(II) Behaviors of a Metal-Nonmetal-Modified Titanium Dioxide. Adsorption Science and Technology, 2021, 2021, 1-15.	3.2	4
18	Directed Selfâ€Assembly of Patchy Microgels into Anisotropic Nanostructures. Macromolecular Rapid Communications, 2020, 41, 1900505.	3.9	9

#	Article	IF	CITATIONS
19	Nitrite accumulation stability evaluation for low-strength ammonium wastewater by adsorption and biological desorption of zeolite under different operational temperature. Science of the Total Environment, 2020, 704, 135260.	8.0	28
20	Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii. International Journal of Biological Macromolecules, 2020, 165, 1900-1910.	7.5	36
21	Adsorption of sulfamethoxazole and sulfadiazine on phosphorus-containing stalk cellulose under different water pH studied by quantitative evaluation. Environmental Science and Pollution Research, 2020, 27, 43246-43261.	5.3	17
22	Nitrogen Removal for Liquid-Ammonia Mercerization Wastewater via Partial Nitritation/Anammox Based on Zeolite Sequencing Batch Reactor. Water (Switzerland), 2020, 12, 2234.	2.7	5
23	Reversible Cross-Linked Mixed Micelles for pH Triggered Swelling and Redox Triggered Degradation for Enhanced and Controlled Drug Release. Pharmaceutics, 2020, 12, 258.	4.5	14
24	Gelation process of nanosilica sol and its mechanism: Molecular dynamics simulation. Chemical Engineering Science, 2020, 216, 115538.	3.8	6
25	The self-assembly behavior of polymer brushes induced by the orientational ordering of rod backbones: a dissipative particle dynamics study. Physical Chemistry Chemical Physics, 2020, 22, 5229-5241.	2.8	4
26	Mesoscopic simulations of drug-loaded diselenide crosslinked micelles: Stability, drug loading and release properties. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110313.	5.0	19
27	Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery. Journal of Colloid and Interface Science, 2019, 555, 82-93.	9.4	30
28	Effect of carbon chain structure on the phthalic acid esters (PAEs) adsorption mechanism by mesoporous cellulose biochar. Chemical Engineering Journal, 2019, 362, 383-391.	12.7	68
29	Optimization of ultrasonic-assisted extraction of pigment from Dioscorea cirrhosa by response surface methodology and evaluation of its stability. RSC Advances, 2019, 9, 1576-1585.	3.6	11
30	Enhanced stability of crosslinked and charged unimolecular micelles from multigeometry triblock copolymers with short hydrophilic segments: dissipative particle dynamics simulation. Soft Matter, 2019, 15, 546-558.	2.7	13
31	Theoretical calculations, molecular dynamics simulations and experimental investigation of the adsorption of cadmium(<scp>ii</scp>) on amidoxime-chelating cellulose. Journal of Materials Chemistry A, 2019, 7, 13714-13726.	10.3	51
32	Effect of Degree of Silicification on Silica/Silicic Acid Binding Cd(II) and Its Mechanism. Journal of Physical Chemistry A, 2019, 123, 3718-3727.	2.5	12
33	Insights into the Glyphosate Adsorption Behavior and Mechanism by a MnFe ₂ O ₄ @Cellulose-Activated Carbon Magnetic Hybrid. ACS Applied Materials & Decripion of the Materia	8.0	83
34	A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere, 2019, 224, 509-518.	8.2	111
35	Insights into sulfamethazine adsorption interfacial interaction mechanism on mesoporous cellulose biochar: Coupling DFT/FOT simulations with experiments. Chemical Engineering Journal, 2019, 356, 341-349.	12.7	119
36	pH-responsive controlled release of mesoporous silica nanoparticles capped with Schiff base copolymer gatekeepers: Experiment and molecular dynamics simulation. Colloids and Surfaces B: Biointerfaces, 2019, 176, 394-403.	5.0	46

#	Article	IF	CITATIONS
37	Quantitative Structure-Property Relationship for pH-Triggered Drug Release Performance of Acid-Responsive Four/Six-Arms Star Polymeric Micelles. Pharmaceutical Research, 2019, 36, 20.	3.5	3
38	pH-Induced evolution of surface patterns in micelles assembled from dirhamnolipids: dissipative particle dynamics simulation. Physical Chemistry Chemical Physics, 2018, 20, 9460-9470.	2.8	19
39	Delivery of anticancer drug using pH-sensitive micelles from triblock copolymer MPEG-b-PBAE-b-PLA. Materials Science and Engineering C, 2018, 84, 254-262.	7.3	49
40	Smart pH-sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging. Colloids and Surfaces B: Biointerfaces, 2018, 163, 29-40.	5.0	55
41	Folic acid grafted and tertiary amino based pH-responsive pentablock polymeric micelles for targeting anticancer drug delivery. Materials Science and Engineering C, 2018, 82, 1-9.	7.3	71
42	Controlled construction of gold nanoparticles in situ from \hat{l}^2 -cyclodextrin based unimolecular micelles for in vitro computed tomography imaging. Journal of Colloid and Interface Science, 2018, 528, 135-144.	9.4	28
43	Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations. Chemical Engineering Journal, 2018, 350, 1000-1009.	12.7	125
44	Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization. Acta Biomaterialia, 2017, 50, 353-360.	8.3	22
45	Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for "pH/redox-triggered―anticancer drug release. Polymer, 2017, 114, 161-172.	3.8	56
46	Polymeric micelles self-assembled from amphiphilic polymers with twin disulfides used as siRNA carriers to enhance the transfection. Materials Science and Engineering C, 2017, 78, 546-552.	7.3	11
47	Fabrication of PDEAEMA-based pH-responsive mixed micelles for application in controlled doxorubicin release. RSC Advances, 2017, 7, 27564-27573.	3.6	25
48	Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens. Acta Biomaterialia, 2017, 64, 200-210.	8.3	19
49	Doxorubicin-Loaded Unimolecular Micelle-Stabilized Gold Nanoparticles as a Theranostic Nanoplatform for Tumor-Targeted Chemotherapy and Computed Tomography Imaging. Biomacromolecules, 2017, 18, 3869-3880.	5.4	61
50	Hydrazone cross-linked micelles based on redox degradable block copolymer for enhanced stability and controlled drug release. Reactive and Functional Polymers, 2017, 119, 64-74.	4.1	16
51	Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells. Acta Biomaterialia, 2017, 48, 378-389.	8.3	25
52	Poly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release. International Journal of Nanomedicine, 2017, Volume 12, 6857-6870.	6.7	21
53	pH-responsive unimolecular micelle-gold nanoparticles-drug nanohybrid system for cancer theranostics. Acta Biomaterialia, 2017, 58, 455-465.	8.3	86
54	Co-Delivery of Imiquimod and Plasmid DNA via an Amphiphilic pH-Responsive Star Polymer that Forms Unimolecular Micelles in Water. Polymers, 2016, 8, 397.	4.5	20

#	Article	IF	Citations
55	Amphiphilic βâ€cyclodextrinâ€based starâ€like block copolymer unimolecular micelles for facile <i>in situ</i> preparation of gold nanoparticles. Journal of Polymer Science Part A, 2016, 54, 186-196.	2.3	43
56	QSPR between molecular structures of polymers and micellar properties based on block unit autocorrelation (BUA) descriptors. Chemometrics and Intelligent Laboratory Systems, 2016, 157, 7-15.	3.5	11
57	Systematic design and application of unimolecular star-like block copolymer micelles: a coarse-grained simulation study. Physical Chemistry Chemical Physics, 2016, 18, 26519-26529.	2.8	23
58	PDEAEMA-based pH-sensitive amphiphilic pentablock copolymers for controlled anticancer drug delivery. RSC Advances, 2016, 6, 68018-68027.	3.6	25
59	Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2016, 142, 55-64.	5.0	30
60	Surfaces presenting \hat{l} ±-phenyl mannoside derivatives enable formation of stable, high coverage, non-pathogenic Escherichia coli biofilms against pathogen colonization. Biomaterials Science, 2015, 3, 842-851.	5 . 4	14
61	Multilamellar Nanoparticles Self-Assembled from Opposite Charged Blends: Insights from Mesoscopic Simulation. Journal of Physical Chemistry C, 2015, 119, 20649-20661.	3.1	23
62	Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation. PLoS ONE, 2015, 10, e0119575.	2.5	30
63	Dissipative particle dynamics simulation on drug loading/release in polyester-PEG dendrimer. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	10
64	In-situ IR Monitoring the Synthesis of Amphiphilic Copolymery P(HEMA-co-tBMA) via ARGET ATRP. Chinese Journal of Chemical Engineering, 2014, 22, 1046-1054.	3.5	4
65	pH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Advances, 2014, 4, 40232-40240.	3.6	32
66	Activated AMPK explains hypolipidemic effects of sulfated low molecular weight guluronate on HepG2 cells. European Journal of Medicinal Chemistry, 2014, 85, 304-310.	5.5	21
67	pH-responsive micelles based on (PCL)2(PDEA-b-PPEGMA)2 miktoarm polymer: controlled synthesis, characterization, and application as anticancer drug carrier. Nanoscale Research Letters, 2014, 9, 243.	5. 7	44
68	Amphiphilic miktoarm star copolymer (PCL)3-(PDEAEMA-b-PPEGMA)3 as pH-sensitive micelles in the delivery of anticancer drug. Journal of Materials Chemistry B, 2014, 2, 4008.	5.8	75
69	pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly($\hat{l}\mu$ -caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl) Tj ETQq1	l 0 878 431	4 r gB T /Over
70	Synthesis, characterization and pH-Responsive self-assembly behavior of amphiphilic multiarm star triblock copolymers based on PCL, PDEAEMA, and PEG. Macromolecular Research, 2013, 21, 1011-1020.	2.4	17
71	Dissipative Particle Dynamics Study on Aggregation of MPEGâ€PAEâ€PLA Block Polymer Micelles Loading Doxorubicine. Chinese Journal of Chemistry, 2012, 30, 1980-1986.	4.9	15
72	Precipitation polymerization of 2â€hydroxyethyl methacrylate in supercritical carbon dioxide. Polymers for Advanced Technologies, 2012, 23, 529-533.	3.2	12

#	Article	IF	CITATIONS
73	Solvent mediated microstructures and release behavior of insulin from pH-sensitive nanoparticles. Colloids and Surfaces B: Biointerfaces, 2012, 94, 206-212.	5.0	10
74	Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials, 2012, 33, 6273-6283.	11.4	211
75	Synthesis of pH-Sensitive Amphiphilic Copolymer Brush by the Combination of ARGET ATRP with ROP and Its Self-Assembly Behavior. Acta Chimica Sinica, 2012, 70, 505.	1.4	1
76	Amperometric Immunosensor for Prostate Specific Antigen Based on Coâ€adsorption of Labeled Antibody and Mediator in Nanoâ€Au Modified Chitosan Membrane. Chinese Journal of Chemistry, 2008, 26, 480-484.	4.9	8
77	Systematic Procedures for Formulation Design of Drug-Loaded Solid Lipid Microparticles: Selection of Carrier Material and Stabilizer. Industrial & Engineering Chemistry Research, 2008, 47, 6091-6100.	3.7	16
78	The effects of cryoprotectants on the freeze-drying of ibuprofen-loaded solid lipid microparticles (SLM). European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 750-759.	4.3	57
79	Liquidâ^'Liquid Equilibria for the Ternary System Methyl Isobutyl Ketone + Water + Hydroquinone. Journal of Chemical & Engineering Data, 2006, 51, 2107-2109.	1.9	55
80	A Dissolution-Diffusion Model and Quantitative Analysis of Drug Controlled Release from Biodegradable Polymer Microspheres. Canadian Journal of Chemical Engineering, 2006, 84, 558-566.	1.7	13
81	Mineralization Mechanism of Calcium Phosphates under Three Kinds of Langmuir Monolayers. Langmuir, 2004, 20, 2243-2249.	3.5	49