Say Hwa Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7068244/publications.pdf Version: 2024-02-01

SAV Ηνώλ ΤΑΝ

#	Article	IF	CITATIONS
1	Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010, 4, 32204.	1.2	337
2	Active droplet sorting in microfluidics: a review. Lab on A Chip, 2017, 17, 751-771.	3.1	250
3	Active droplet generation in microfluidics. Lab on A Chip, 2016, 16, 35-58.	3.1	199
4	Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. Journal Physics D: Applied Physics, 2008, 41, 085502.	1.3	143
5	Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet. Langmuir, 2010, 26, 12553-12559.	1.6	116
6	Formation and manipulation of ferrofluid droplets at a microfluidic <i>T</i> -junction. Journal of Micromechanics and Microengineering, 2010, 20, 045004.	1.5	113
7	A versatile PDMS submicrobead/graphene oxide nanocomposite ink for the direct ink writing of wearable micron-scale tactile sensors. Applied Materials Today, 2019, 16, 482-492.	2.3	106
8	Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors and Actuators B: Chemical, 2018, 267, 14-25.	4.0	99
9	Thermally mediated droplet formation in microchannels. Applied Physics Letters, 2007, 91, .	1.5	98
10	Microfluidic flow-focusing in ac electric fields. Lab on A Chip, 2014, 14, 1099.	3.1	96
11	Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluidics and Nanofluidics, 2011, 11, 177-187.	1.0	86
12	Modelling and optimization of micro optofluidic lenses. Lab on A Chip, 2009, 9, 1178.	3.1	75
13	A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab on A Chip, 2016, 16, 3947-3956.	3.1	73
14	Thermally mediated control of liquid microdroplets at a bifurcation. Journal Physics D: Applied Physics, 2009, 42, 065503.	1.3	71
15	Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension. Journal Physics D: Applied Physics, 2008, 41, 165501.	1.3	69
16	Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluidics and Nanofluidics, 2009, 6, 253-259.	1.0	64
17	Microfluidic Formation of Coculture Tumor Spheroids with Stromal Cells As a Novel 3D Tumor Model for Drug Testing. ACS Biomaterials Science and Engineering, 2018, 4, 4425-4433.	2.6	64
18	AC electric field induced droplet deformation in a microfluidic T-junction. Lab on A Chip, 2016, 16, 2982-2986.	3.1	56

SAY HWA TAN

#	Article	IF	CITATIONS
19	Generation and manipulation of monodispersed ferrofluid emulsions: The effect of a uniform magnetic field in flow-focusing and T-junction configurations. Physical Review E, 2011, 84, 036317.	0.8	49
20	Negative Pressure Induced Droplet Generation in a Microfluidic Flow-Focusing Device. Analytical Chemistry, 2017, 89, 4387-4391.	3.2	48
21	High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1422-1430.	2.7	47
22	The Microfluidic Jukebox. Scientific Reports, 2014, 4, 4787.	1.6	41
23	On-Chip Microparticle and Cell Washing Using Coflow of Viscoelastic Fluid and Newtonian Fluid. Analytical Chemistry, 2017, 89, 9574-9582.	3.2	37
24	Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	35
25	Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid. RSC Advances, 2017, 7, 3461-3469.	1.7	35
26	Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels. Lab on A Chip, 2018, 18, 1292-1297.	3.1	35
27	A Perspective on the Rise of Optofluidics and the Future. Micromachines, 2017, 8, 152.	1.4	34
28	Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab on A Chip, 2015, 15, 996-999.	3.1	33
29	Self-Aligned Interdigitated Transducers for Acoustofluidics. Micromachines, 2016, 7, 216.	1.4	32
30	Breakup length of AC electrified jets in a microfluidic flow-focusing junction. Microfluidics and Nanofluidics, 2015, 19, 787-794.	1.0	29
31	A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length. Microfluidics and Nanofluidics, 2010, 9, 889-896.	1.0	28
32	A portable, hand-powered microfluidic device for sorting of biological particles. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	28
33	Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration. Optics Letters, 2010, 35, 327.	1.7	25
34	AC electrified jets in a flow-focusing device: Jet length scaling. Biomicrofluidics, 2016, 10, 043504.	1.2	20
35	On-Demand Droplet Merging with an AC Electric Field for Multiple-Volume Droplet Generation. Analytical Chemistry, 2020, 92, 1147-1153.	3.2	19
36	A Microfluidic Method for Investigating Ion-Specific Bubble Coalescence in Salt Solutions. Langmuir, 2016, 32, 11520-11524.	1.6	17

SAY HWA TAN

#	Article	IF	CITATIONS
37	Ensembles of Photonic Beads: Optical Properties and Enhanced Light—Matter Interactions. Advanced Optical Materials, 2020, 8, 1901537.	3.6	16
38	Influence of Interfacial Gas Enrichment on Controlled Coalescence of Oil Droplets in Water in Microfluidics. Langmuir, 2019, 35, 3615-3623.	1.6	15
39	Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry: environment stability and activation by simple vacuum oven desiccation. Analyst, The, 2016, 141, 4973-4981.	1.7	14
40	Development of a Microfluidic Droplet-Based Microbioreactor for Microbial Cultivation. ACS Biomaterials Science and Engineering, 2020, 6, 3630-3637.	2.6	14
41	A micro optofluidic lens with short focal length. Journal of Micromechanics and Microengineering, 2009, 19, 085012.	1.5	13
42	Pressure-Driven Filling of Closed-End Microchannel: Realization of Comb-Shaped Transducers for Acoustofluidics. Physical Review Applied, 2018, 10, .	1.5	13
43	Toward the commercialization of optofluidics. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	12
44	Controllable droplet generation at a microfluidic T-junction using AC electric field. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	9
45	Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers. Scientific Reports, 2016, 5, 17811.	1.6	6
46	A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment. Biomedical Microdevices, 2018, 20, 30.	1.4	6
47	An optical MEMS accelerometer fabricated using double-sided deep reactive ion etching on silicon-on-insulator wafer. Journal of Micromechanics and Microengineering, 2017, 27, 067001.	1.5	5
48	Design optimization for an SOI MOEMS accelerometer. Microsystem Technologies, 2018, 24, 465-472.	1.2	5
49	Pressure-driven filling of liquid metal in closed-end microchannels. Physical Review E, 2018, 98, .	0.8	4
50	Study of concentric, eccentric and split type magnetic membrane micro-mixers. Sensing and Bio-Sensing Research, 2018, 19, 14-23.	2.2	2
51	Editorial for the Special Issue on the Insights and Advancements in Microfluidics. Micromachines, 2017, 8, 254.	1.4	0