Mehrdad Jazayeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7068197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal context calibrates interval timing. Nature Neuroscience, 2010, 13, 1020-1026.	7.1	602
2	Optimal representation of sensory information by neural populations. Nature Neuroscience, 2006, 9, 690-696.	7.1	461
3	Flexible timing by temporal scaling of cortical responses. Nature Neuroscience, 2018, 21, 102-110.	7.1	346
4	Neural Coding of Uncertainty and Probability. Annual Review of Neuroscience, 2014, 37, 205-220.	5.0	251
5	Decoding the activity of neuronal populations in macaque primary visual cortex. Nature Neuroscience, 2011, 14, 239-245.	7.1	229
6	Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics. Neuron, 2018, 98, 1005-1019.e5.	3.8	225
7	Navigating the Neural Space in Search of the Neural Code. Neuron, 2017, 93, 1003-1014.	3.8	205
8	A Neural Mechanism for Sensing and Reproducing a Time Interval. Current Biology, 2015, 25, 2599-2609.	1.8	169
9	Executed and Observed Movements Have Different Distributed Representations in Human aIPS. Journal of Neuroscience, 2008, 28, 11231-11239.	1.7	163
10	A new perceptual illusion reveals mechanisms of sensory decoding. Nature, 2007, 446, 912-915.	13.7	159
11	Representation of Accumulating Evidence for a Decision in Two Parietal Areas. Journal of Neuroscience, 2015, 35, 4306-4318.	1.7	150
12	Saccadic eye movements evoked by optogenetic activation of primate V1. Nature Neuroscience, 2012, 15, 1368-1370.	7.1	148
13	Bayesian Computation through Cortical Latent Dynamics. Neuron, 2019, 103, 934-947.e5.	3.8	146
14	Hierarchical reasoning by neural circuits in the frontal cortex. Science, 2019, 364, .	6.0	123
15	Low-dimensional dynamics for working memory and time encoding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23021-23032.	3.3	93
16	A Dynamical Systems Perspective on Flexible Motor Timing. Trends in Cognitive Sciences, 2018, 22, 938-952.	4.0	92
17	Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Current Opinion in Neurobiology, 2021, 70, 113-120.	2.0	86
18	Time in Cortical Circuits. Journal of Neuroscience, 2015, 35, 13912-13916.	1.7	71

Mehrdad Jazayeri

#	Article	IF	CITATIONS
19	A cerebellar mechanism for learning prior distributions of time intervals. Nature Communications, 2018, 9, 469.	5.8	54
20	A neural circuit model for human sensorimotor timing. Nature Communications, 2020, 11, 3933.	5.8	50
21	Internal models of sensorimotor integration regulate cortical dynamics. Nature Neuroscience, 2019, 22, 1871-1882.	7.1	47
22	Integration of speed and time for estimating time to contact. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2879-E2887.	3.3	45
23	Entrainment and maintenance of an internal metronome in supplementary motor area. ELife, 2018, 7, .	2.8	38
24	A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron, 2021, 109, 2995-3011.e5.	3.8	35
25	Neural Encoding and Representation of Time for Sensorimotor Control and Learning. Journal of Neuroscience, 2021, 41, 866-872.	1.7	27
26	Engineering recurrent neural networks from task-relevant manifolds and dynamics. PLoS Computational Biology, 2020, 16, e1008128.	1.5	26
27	A Network Perspective on Sensorimotor Learning. Trends in Neurosciences, 2021, 44, 170-181.	4.2	23
28	Late Bayesian inference in mental transformations. Nature Communications, 2018, 9, 4419.	5.8	18
29	A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise. Scientific Reports, 2018, 8, 12597.	1.6	14
30	Reinforcement regulates timing variability in thalamus. ELife, 2020, 9, .	2.8	13
31	Validating model-based Bayesian integration using prior–cost metamers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
32	Distinct spatiotemporal mechanisms underlie extra-classical receptive field modulation in macaque V1 microcircuits. ELife, 2020, 9, .	2.8	8
33	Optogenetics in primates: monkey see monkey look. Nature Precedings, 2011, , .	0.1	2
34	Optogenetics Advances in Primate Visual Pathway. Neuron, 2016, 90, 8-10.	3.8	2
35	Zooming Out of Single Neurons Reveals Structure in Mnemonic Representations. Neuron, 2017, 96, 1210-1212.	3.8	1
36	Engineering recurrent neural networks from task-relevant manifolds and dynamics. , 2020, 16, e1008128.		0

#	Article	IF	CITATIONS
37	Engineering recurrent neural networks from task-relevant manifolds and dynamics. , 2020, 16, e1008128.		0
38	Engineering recurrent neural networks from task-relevant manifolds and dynamics. , 2020, 16, e1008128.		0
39	Engineering recurrent neural networks from task-relevant manifolds and dynamics. , 2020, 16, e1008128.		О
40	Engineering recurrent neural networks from task-relevant manifolds and dynamics. , 2020, 16, e1008128.		0
41	Engineering recurrent neural networks from task-relevant manifolds and dynamics. , 2020, 16, e1008128.		0