Paula B. Andrade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7068057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenolics: From Chemistry to Biology. Molecules, 2009, 14, 2202-2211.	1.7	477
2	Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 2007, 12, 1153-1162.	1.7	385
3	Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food and Chemical Toxicology, 2007, 45, 2287-2295.	1.8	356
4	Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: application to seeds of quince (Cydonia oblonga). Phytochemical Analysis, 2003, 14, 352-359.	1.2	290
5	Quince (Cydonia oblongaMiller) Fruit (Pulp, Peel, and Seed) and Jam:Â Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2004, 52, 4705-4712.	2.4	282
6	Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chemistry, 2005, 89, 561-568.	4.2	281
7	Antioxidative Properties of Cardoon (Cynara cardunculusL.) Infusion Against Superoxide Radical, Hydroxyl Radical, and Hypochlorous Acid. Journal of Agricultural and Food Chemistry, 2002, 50, 4989-4993.	2.4	244
8	Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, 2013, 42, 126-132.	2.5	237
9	Ficus carica L.: Metabolic and biological screening. Food and Chemical Toxicology, 2009, 47, 2841-2846.	1.8	204
10	Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1161, 214-223.	1.8	189
11	Table Olives from Portugal:  Phenolic Compounds, Antioxidant Potential, and Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 8425-8431.	2.4	187
12	Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Marine Drugs, 2012, 10, 2766-2781.	2.2	180
13	Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. International Journal of Molecular Sciences, 2018, 19, 1668.	1.8	176
14	Can Phlorotannins Purified Extracts Constitute a Novel Pharmacological Alternative for Microbial Infections with Associated Inflammatory Conditions?. PLoS ONE, 2012, 7, e31145.	1.1	173
15	Antioxidant Activity ofCentaurium erythraeaInfusion Evidenced by Its Superoxide Radical Scavenging and Xanthine Oxidase Inhibitory Activity. Journal of Agricultural and Food Chemistry, 2001, 49, 3476-3479.	2.4	164
16	Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 2009, 93, 73-77.	2.3	164
17	Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair?. Journal of Experimental Botany, 2011, 62, 2841-2854.	2.4	157
18	Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Marine Drugs, 2015, 13, 3182-3230.	2.2	155

#	Article	IF	CITATIONS
19	Valuable compounds in macroalgae extracts. Food Chemistry, 2013, 138, 1819-1828.	4.2	148
20	Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food and Chemical Toxicology, 2009, 47, 860-865.	1.8	137
21	Chemometric characterization of three varietal olive oils (Cvs. Cobrançosa, Madural and Verdeal) Tj ETQq1 1 406-414.	0.784314 r 4.2	gBT /Overlo <mark>ck</mark> 136
22	Phenolic fingerprint of peppermint leaves. Food Chemistry, 2001, 73, 307-311.	4.2	135
23	Antioxidant Activity of Hypericum androsaemum Infusion: Scavenging Activity against Superoxide Radical, Hydroxyl Radical and Hypochlorous Acid Biological and Pharmaceutical Bulletin, 2002, 25, 1320-1323.	0.6	131
24	Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chemistry, 2004, 88, 373-379.	4.2	130
25	Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chemistry, 2009, 114, 1019-1027.	4.2	123
26	Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases. Marine Drugs, 2014, 12, 4934-4972.	2.2	123
27	The drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats. Journal of Ethnopharmacology, 2005, 97, 383-389.	2.0	120
28	Correlation between the Pattern Volatiles and the Overall Aroma of Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2008, 56, 1704-1712.	2.4	118
29	Determination of phenolic compounds in honeys with different floral origin by capillary zone electrophoresis. Food Chemistry, 1997, 60, 79-84.	4.2	116
30	Phenolic Profile of Quince Fruit (Cydonia oblongaMiller) (Pulp and Peel). Journal of Agricultural and Food Chemistry, 2002, 50, 4615-4618.	2.4	114
31	Phenolics and antimicrobial activity of traditional stoned table olives â€~alcaparra'. Bioorganic and Medicinal Chemistry, 2006, 14, 8533-8538.	1.4	113
32	Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal, 2009, 93, 29-35.	2.3	113
33	Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food and Chemical Toxicology, 2009, 47, 1372-1377.	1.8	113
34	Natural Occurrence of Abscisic Acid in Heather Honey and Floral Nectar. Journal of Agricultural and Food Chemistry, 1996, 44, 2053-2056.	2.4	111
35	Analysis and quantification of flavonoidic compounds from Portuguese olive (Olea Europaea L.) leaf cultivars. Natural Product Research, 2005, 19, 189-195.	1.0	111
36	Antifungal Activity of Phlorotannins against Dermatophytes and Yeasts: Approaches to the Mechanism of Action and Influence on Candida albicans Virulence Factor. PLoS ONE, 2013, 8, e72203.	1.1	107

#	Article	IF	CITATIONS
37	Plants Probiotics as a Tool to Produce Highly Functional Fruits: The Case of Phyllobacterium and Vitamin C in Strawberries. PLoS ONE, 2015, 10, e0122281.	1.1	106
38	Studies on the Antioxidant Activity of <i>Lippia citriodora</i> Infusion: Scavenging Effect on Superoxide Radical, Hydroxyl Radical and Hypochlorous Acid. Biological and Pharmaceutical Bulletin, 2002, 25, 1324-1327.	0.6	102
39	Phenolic antioxidant compounds produced by in vitro shoots of sage (Salvia officinalis L.). Plant Science, 2002, 162, 981-987.	1.7	102
40	Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. Journal of Chromatography A, 2008, 1182, 56-64.	1.8	102
41	Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchemical Journal, 2009, 92, 129-134.	2.3	102
42	Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology, 2007, 45, 1805-1813.	1.8	101
43	Study of the Organic Acids Composition of Quince (<i>Cydonia oblonga</i> Miller) Fruit and Jam. Journal of Agricultural and Food Chemistry, 2002, 50, 2313-2317.	2.4	99
44	Chemical and antioxidative assessment of dietary turnip (Brassica rapa var. rapa L.). Food Chemistry, 2007, 105, 1003-1010.	4.2	99
45	Water and methanolic extracts of Salvia officinalis protect HepC2 cells from t-BHP induced oxidative damage. Chemico-Biological Interactions, 2007, 167, 107-115.	1.7	99
46	In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chemistry, 2011, 129, 454-462.	4.2	98
47	Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chemistry, 2012, 134, 894-904.	4.2	97
48	European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chemistry, 2017, 215, 177-184.	4.2	95
49	New Phenolic Compounds and Antioxidant Potential of <i>Catharanthus roseus</i> . Journal of Agricultural and Food Chemistry, 2008, 56, 9967-9974.	2.4	93
50	Evaluation of Antioxidant, Antidiabetic and Anticholinesterase Activities of Smallanthus sonchifolius Landraces and Correlation with Their Phytochemical Profiles. International Journal of Molecular Sciences, 2015, 16, 17696-17718.	1.8	92
51	Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1996, 202, 40-44.	0.7	91
52	Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. Journal of Food Science and Technology, 2017, 54, 219-227.	1.4	90
53	Phenolic Profile of <i>Cydonia oblonga</i> Miller Leaves. Journal of Agricultural and Food Chemistry, 2007, 55, 7926-7930.	2.4	89
54	First Report on Cydonia oblonga Miller Anticancer Potential: Differential Antiproliferative Effect against Human Kidney and Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 3366-3370.	2.4	89

#	Article	IF	CITATIONS
55	Vitis vinifera leaves towards bioactivity. Industrial Crops and Products, 2013, 43, 434-440.	2.5	89
56	Phenolic Compounds in External Leaves of Tronchuda Cabbage (Brassica oleracea L. var. costata DC). Journal of Agricultural and Food Chemistry, 2005, 53, 2901-2907.	2.4	88
57	Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chemistry, 2008, 110, 47-56.	4.2	88
58	Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Research International, 2013, 50, 167-175.	2.9	88
59	Effect of the Conservation Procedure on the Contents of Phenolic Compounds and Organic Acids in Chanterelle (Cantharellus cibarius) Mushroom. Journal of Agricultural and Food Chemistry, 2005, 53, 4925-4931.	2.4	86
60	Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE, 2013, 8, e59131.	1.1	85
61	Contents of Carboxylic Acids and Two Phenolics and Antioxidant Activity of Dried Portuguese Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2006, 54, 8530-8537.	2.4	84
62	Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment. Journal of Pharmacy and Pharmacology, 2013, 65, 1681-1700.	1.2	84
63	Hydroxyl radical and hypochlorous acid scavenging activity of small Centaury (Centaurium) Tj ETQq1 1 0.784314 517-522.	rgBT /Ove 2.3	erlock 10 Tf 5 82
64	Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine, 2010, 17, 646-652.	2.3	82
65	Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds. Food and Chemical Toxicology, 2013, 53, 240-248.	1.8	82
66	Quince (Cydonia oblongaMiller) Fruit Characterization Using Principal Component Analysis. Journal of Agricultural and Food Chemistry, 2005, 53, 111-122.	2.4	81
67	Chemical composition and antioxidant activity of tronchuda cabbage internal leaves. European Food Research and Technology, 2006, 222, 88-98.	1.6	81
68	Structure and Function of a Mycobacterial NHEJ DNA Repair Polymerase. Journal of Molecular Biology, 2007, 366, 391-405.	2.0	81
69	Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chemistry, 2012, 130, 671-678.	4.2	81
70	STEROL PROFILES IN 18 MACROALGAE OF THE PORTUGUESE COAST ¹ . Journal of Phycology, 2011, 47, 1210-1218.	1.0	80
71	Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chemistry, 2010, 123, 548-557.	4.2	79
72	Quantitation of Nine Organic Acids in Wild Mushrooms. Journal of Agricultural and Food Chemistry, 2005, 53, 3626-3630.	2.4	78

#	Article	IF	CITATIONS
73	Organic acids in two Portuguese chestnut (Castanea sativa Miller) varieties. Food Chemistry, 2007, 100, 504-508.	4.2	77
74	Organic acids composition of Cydonia oblonga Miller leaf. Food Chemistry, 2008, 111, 393-399.	4.2	77
75	Flavonoids and Phenolic Acids of Sage:  Influence of Some Agricultural Factors. Journal of Agricultural and Food Chemistry, 2000, 48, 6081-6084.	2.4	76
76	The Use of Flavonoids in Central Nervous System Disorders. Current Medicinal Chemistry, 2013, 20, 4694-4719.	1.2	75
77	Tomato (Lycopersicon esculentum) Seeds: New Flavonols and Cytotoxic Effect. Journal of Agricultural and Food Chemistry, 2010, 58, 2854-2861.	2.4	74
78	HPLC-DAD-MS/MS-ESI Screening of Phenolic Compounds in Pieris brassicae L. Reared on Brassica rapa var. <i>rapa</i> L. Journal of Agricultural and Food Chemistry, 2008, 56, 844-853.	2.4	73
79	Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chemistry, 2012, 135, 1253-1260.	4.2	73
80	Flavonoids from Portuguese heather honey. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1994, 199, 32-37.	0.7	71
81	New <i>C</i> -Deoxyhexosyl Flavones and Antioxidant Properties of <i>Passiflora edulis</i> Leaf Extract. Journal of Agricultural and Food Chemistry, 2007, 55, 10187-10193.	2.4	71
82	A Previous Study of Phenolic Profiles of Quince, Pear, and Apple Purees by HPLC Diode Array Detection for the Evaluation of Quince Puree Genuineness. Journal of Agricultural and Food Chemistry, 1998, 46, 968-972.	2.4	70
83	Composition of Quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids. Natural Product Research, 2005, 19, 275-281.	1.0	70
84	How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an <i>in vivo</i> model for testing mitochondriaâ€ŧargeted drugs. British Journal of Pharmacology, 2013, 169, 1072-1090.	2.7	70
85	Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chemical Science, 2018, 9, 1740-1752.	3.7	69
86	Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacological Research, 2016, 103, 328-339.	3.1	67
87	Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chemistry, 2017, 230, 463-474.	4.2	67
88	Antioxidative properties of tronchuda cabbage (Brassica oleracea L. var. costata DC) external leaves against DPPH, superoxide radical, hydroxyl radical and hypochlorous acid. Food Chemistry, 2006, 98, 416-425.	4.2	66
89	Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 2007, 105, 1018-1025.	4.2	64
90	Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2. Molecules, 2017, 22, 56.	1.7	64

#	Article	IF	CITATIONS
91	Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Marine Drugs, 2019, 17, 329.	2.2	64
92	Analysis of Vervain Flavonoids by HPLC/Diode Array Detector Method. Its Application to Quality Control. Journal of Agricultural and Food Chemistry, 1999, 47, 4579-4582.	2.4	63
93	Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). European Food Research and Technology, 2004, 218, 385-389.	1.6	63
94	<i>Lycopersicon esculentum</i> Seeds: An Industrial Byproduct as an Antimicrobial Agent. Journal of Agricultural and Food Chemistry, 2010, 58, 9529-9536.	2.4	63
95	Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: Chemical approach by HPLC-DAD-ESI/MS and UPLC-ESI-QTOF/MS. Algal Research, 2018, 29, 113-120.	2.4	63
96	New Beverages of Lemon Juice Enriched with the Exotic Berries Maqui, AçaıÌ; and Blackthorn: Bioactive Components and in Vitro Biological Properties. Journal of Agricultural and Food Chemistry, 2012, 60, 6571-6580.	2.4	62
97	Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential. Food Chemistry, 2012, 134, 2090-2096.	4.2	62
98	A Comprehensive View of the Neurotoxicity Mechanisms of Cocaine and Ethanol. Neurotoxicity Research, 2015, 28, 253-267.	1.3	62
99	Analysis of Phenolic Compounds in the Evaluation of Commercial Quince Jam Authenticity. Journal of Agricultural and Food Chemistry, 2000, 48, 2853-2857.	2.4	61
100	Influence of Two Fertilization Regimens on the Amounts of Organic Acids and Phenolic Compounds of Tronchuda Cabbage (Brassica oleraceaL. Var.costataDC). Journal of Agricultural and Food Chemistry, 2005, 53, 9128-9132.	2.4	60
101	Principal components of phenolics to characterize red Vinho Verde grapes: Anthocyanins or non-coloured compounds?. Talanta, 2008, 75, 1190-1202.	2.9	60
102	Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms. Molecules, 2013, 18, 8858-8872.	1.7	60
103	α-Glucosidase and α-amylase inhibitors from Myrcia spp.: a stronger alternative to acarbose?. Journal of Pharmaceutical and Biomedical Analysis, 2016, 118, 322-327.	1.4	60
104	Physicochemical attributes and pollen spectrum of Portuguese heather honeys. Food Chemistry, 1999, 66, 503-510.	4.2	59
105	Tronchuda cabbage (Brassica oleracea L. var. costata DC) seeds: Phytochemical characterization and antioxidant potential. Food Chemistry, 2007, 101, 549-558.	4.2	59
106	Multivariate Analysis of Tronchuda Cabbage (Brassica oleracea L. var.costataDC) Phenolics: Influence of Fertilizers. Journal of Agricultural and Food Chemistry, 2008, 56, 2231-2239.	2.4	58
107	Anti-Inflammatory Effect of Unsaturated Fatty Acids and Ergosta-7,22-dien-3-ol from Marthasterias glacialis: Prevention of CHOP-Mediated ER-Stress and NF-1ºB Activation. PLoS ONE, 2014, 9, e88341.	1.1	58
108	Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L'Hér. Food Chemistry, 2012, 135, 112-121.	4.2	57

#	Article	IF	CITATIONS
109	Limited terminal transferase in human DNA polymerase μ defines the required balance between accuracy and efficiency in NHEJ. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16203-16208.	3.3	56
110	Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof. Marine Drugs, 2015, 13, 6453-6471.	2.2	56
111	Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalisL.). Journal of Plant Physiology, 2003, 160, 1025-1032.	1.6	54
112	Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chemistry, 2017, 235, 298-307.	4.2	54
113	Phenolic profile in the evaluation of commercial quince jellies authenticity. Food Chemistry, 2000, 71, 281-285.	4.2	53
114	Comparative Study on Free Amino Acid Composition of Wild Edible Mushroom Species. Journal of Agricultural and Food Chemistry, 2008, 56, 10973-10979.	2.4	53
115	Volatile composition of Catharanthus roseus (L.) G. Don using solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 674-685.	1.4	53
116	Chemical Assessment and <i>in Vitro</i> Antioxidant Capacity of <i>Ficus carica</i> Latex. Journal of Agricultural and Food Chemistry, 2010, 58, 3393-3398.	2.4	53
117	Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines. Marine Drugs, 2011, 9, 852-862.	2.2	53
118	Anti-Inflammatory Potential of Monogalactosyl Diacylglycerols and a Monoacylglycerol from the Edible Brown Seaweed Fucus spiralis Linnaeus. Marine Drugs, 2014, 12, 1406-1418.	2.2	53
119	Neuroprotective effect of steroidal alkaloids on glutamate-induced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. Journal of Steroid Biochemistry and Molecular Biology, 2014, 140, 106-115.	1.2	53
120	Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Marine Drugs, 2016, 14, 23.	2.2	53
121	Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE, 2018, 13, e0192872.	1.1	53
122	Inhibitory effect of Lavandula viridis on Fe2+-induced lipid peroxidation, antioxidant and anti-cholinesterase properties. Food Chemistry, 2011, 126, 1779-1786.	4.2	51
123	Inflorescences of Brassicacea species as source of bioactive compounds: A comparative study. Food Chemistry, 2008, 110, 953-961.	4.2	50
124	Metabolic and Bioactivity Insights into Brassica oleracea var. <i>acephala</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 8884-8892.	2.4	50
125	Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var.) Tj ETQq1	1 0.784314 1.8	rgBT /Overlo
126	Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacological Research, 2020, 155, 104702.	3.1	50

#	Article	IF	CITATIONS
127	<i>In vivo</i> Skin Irritation Potential of a <i> Castanea sativa </i> (Chestnut) Leaf Extract, a Putative Natural Antioxidant for Topical Application. Basic and Clinical Pharmacology and Toxicology, 2008, 103, 461-467.	1.2	49
128	Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food Chemistry, 2010, 119, 1359-1368.	4.2	49
129	Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?. PLoS ONE, 2011, 6, e24098.	1.1	49
130	Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential. Food and Chemical Toxicology, 2013, 57, 69-74.	1.8	49
131	Free Amino Acid Composition of Quince (Cydonia oblongaMiller) Fruit (Pulp and Peel) and Jam. Journal of Agricultural and Food Chemistry, 2004, 52, 1201-1206.	2.4	48
132	Further Insight into the Latex Metabolite Profile of Ficus carica. Journal of Agricultural and Food Chemistry, 2010, 58, 10855-10863.	2.4	48
133	Marine natural pigments: Chemistry, distribution and analysis. Dyes and Pigments, 2014, 111, 124-134.	2.0	48
134	Free Water-Soluble Phenolics Profiling in Barley (Hordeum vulgare L.). Journal of Agricultural and Food Chemistry, 2009, 57, 2405-2409.	2.4	47
135	Development of a Mitochondriotropic Antioxidant Based on Caffeic Acid: Proof of Concept on Cellular and Mitochondrial Oxidative Stress Models. Journal of Medicinal Chemistry, 2017, 60, 7084-7098.	2.9	47
136	Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Science, 2000, 150, 93-101.	1.7	46
137	Phenolic profile of hazelnut (Corylus Avellana L.) leaves cultivars grown in Portugal. Natural Product Research, 2005, 19, 157-163.	1.0	46
138	Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS. Microchemical Journal, 2009, 93, 140-146.	2.3	45
139	Simple and reproducible HPLC–DAD–ESI-MS/MS analysis of alkaloids in Catharanthus roseus roots. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 65-69.	1.4	45
140	Approach to the study of <i>C</i> â€glycosyl flavones acylated with aliphatic and aromatic acids from <i>Spergularia rubra</i> by highâ€performance liquid chromatographyâ€photodiode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 700-712	0.7	45
141	Natural extracts as potential source of antioxidants to stabilize polyolefins. Journal of Applied Polymer Science, 2011, 119, 3553-3559.	1.3	45
142	Metabolic profile and biological activities of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco: Studies on the essential oil and polar extracts. Food Chemistry, 2013, 141, 2501-2506.	4.2	45
143	Methoxylated Xanthones in the Quality Control of Small Centaury (Centaurium erythraea) Flowering Tops. Journal of Agricultural and Food Chemistry, 2002, 50, 460-463.	2.4	44
144	Analysis of non-coloured phenolics in red wine: Effect of Dekkera bruxellensis yeast. Food Chemistry, 2005, 89, 185-189.	4.2	44

#	Article	IF	CITATIONS
145	Principal component analysis as tool of characterization of quince (Cydonia oblonga Miller) jam. Food Chemistry, 2006, 94, 504-512.	4.2	44
146	Distinct fatty acid profile of ten brown macroalgae. Revista Brasileira De Farmacognosia, 2013, 23, 608-613.	0.6	44
147	Amino acids, fatty acids and sterols profile of some marine organisms from Portuguese waters. Food Chemistry, 2013, 141, 2412-2417.	4.2	44
148	Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chemistry, 2016, 194, 117-127.	4.2	44
149	Determination of low molecular weight volatiles in Ficus carica using HS-SPME and GC/FID. Food Chemistry, 2010, 121, 1289-1295.	4.2	43
150	Ellagic Acid and Derivatives from <i>Cochlospermum angolensis</i> Welw. Extracts: HPLC–DAD–ESI/MS <i>ⁿ</i> Profiling, Quantification and <i>In Vitro</i> Antiâ€depressant, Antiâ€cholinesterase and Antiâ€oxidant Activities. Phytochemical Analysis, 2013, 24, 534-540.	1.2	43
151	Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chemistry, 2013, 141, 3636-3648.	4.2	43
152	The Consistency Between Phytotoxic Effects and the Dynamics of Allelochemicals Release from Eucalyptus globulus Leaves Used as Bioherbicide Green Manure. Journal of Chemical Ecology, 2018, 44, 658-670.	0.9	43
153	A preliminary study of non-coloured phenolics in wines of varietal white grapes (códega, gouveio and) Tj ETQq1 1 Chemistry, 1999, 67, 39-44.	0.784314 4.2	4 rgBT /Over 42
154	Characterisation of the phenolic profile ofBoerhaavia diffusa L. by HPLC-PAD-MS/MS as a tool for quality control. Phytochemical Analysis, 2005, 16, 451-458.	1.2	42
155	Green tea: A promising anticancer agent for renal cell carcinoma. Food Chemistry, 2010, 122, 49-54.	4.2	42
156	Development and Evaluation of a GC/FID Method for the Analysis of Free Amino Acids in Quince Fruit and Jam. Analytical Sciences, 2003, 19, 1285-1290.	0.8	41
157	Boerhaavia diffusa: Metabolite profiling of a medicinal plant from Nyctaginaceae. Food and Chemical Toxicology, 2009, 47, 2142-2149.	1.8	41
158	The pigments of kelps (Ochrophyta) as part of the flexible response to highly variable marine environments. Journal of Applied Phycology, 2016, 28, 3689-3696.	1.5	41
159	Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Research, 2017, 28, 1-8.	2.4	41
160	Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications. Nanomaterials, 2019, 9, 541.	1.9	41
161	3,4-Dimethoxycinnamic acid levels as a tool for differentiation of Coffea canephora var. robusta and Coffea arabica. Food Chemistry, 1998, 61, 511-514.	4.2	40
162	Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	2.4	40

#	Article	IF	CITATIONS
163	Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Marine Drugs, 2016, 14, 39.	2.2	40
164	Palmitic Acid and Ergosta-7,22-dien-3-ol Contribute to the Apoptotic Effect and Cell Cycle Arrest of an Extract from Marthasterias glacialis L. in Neuroblastoma Cells. Marine Drugs, 2014, 12, 54-68.	2.2	39
165	Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in in inflammation and allergy network. Trends in Food Science and Technology, 2019, 86, 153-171.	7.8	39
166	Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde―grapes. Analytica Chimica Acta, 2007, 583, 15-22.	2.6	38
167	Tronchuda Cabbage (Brassica oleracea L. var. <i>costata</i> DC): Scavenger of Reactive Nitrogen Species. Journal of Agricultural and Food Chemistry, 2008, 56, 4205-4211.	2.4	38
168	Chemical composition and biological screening of Capsella bursa-pastoris. Revista Brasileira De Farmacognosia, 2011, 21, 635-643.	0.6	38
169	Phytochemical investigations and biological potential screening with cellular and non-cellular models of globe amaranth (Gomphrena globosaL.) inflorescences. Food Chemistry, 2012, 135, 756-763.	4.2	38
170	A new insight on elderberry anthocyanins bioactivity: Modulation of mitochondrial redox chain functionality and cell redox state. Journal of Functional Foods, 2019, 56, 145-155.	1.6	38
171	Oxygen and Nitrogen Reactive Species Are Effectively Scavenged by Eucalyptus globulus Leaf Water Extract. Journal of Medicinal Food, 2009, 12, 175-183.	0.8	37
172	Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chemistry, 2011, 127, 1487-1495.	4.2	37
173	Inoculation of the Nonlegume <i>Capsicum annuum</i> (L.) with <i>Rhizobium</i> Strains. 1. Effect on Bioactive Compounds, Antioxidant Activity, and Fruit Ripeness. Journal of Agricultural and Food Chemistry, 2014, 62, 557-564.	2.4	37
174	Analysis of phenolic compounds in Spanish Albrariño and Portuguese Alvarinho and Loureiro wines by capillary zone electrophoresis and high-performance liquid chromatography. Electrophoresis, 2001, 22, 1568-1572.	1.3	36
175	Preliminary study of flavonols in port wine grape varieties. Food Chemistry, 2001, 73, 397-399.	4.2	36
176	Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food and Chemical Toxicology, 2009, 47, 1349-1354.	1.8	36
177	In Vitro Cultures of Brassica oleracea L. var.costataDC: Potential Plant Bioreactor for Antioxidant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2009, 57, 1247-1252.	2.4	36
178	Exploiting Catharanthus roseus roots: Source of antioxidants. Food Chemistry, 2010, 121, 56-61.	4.2	36
179	Further Knowledge on the Phenolic Profile of <i>Colocasia esculenta</i> (L.) Shott. Journal of Agricultural and Food Chemistry, 2012, 60, 7005-7015.	2.4	36
180	Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation. Industrial Crops and Products, 2012, 36, 246-256.	2.5	36

#	Article	IF	CITATIONS
181	Beneficial effects of white wine polyphenols-enriched diet on Alzheimer's disease-like pathology. Journal of Nutritional Biochemistry, 2018, 55, 165-177.	1.9	36
182	Xanthone production in calli and suspended cells of Hypericum perforatum. Journal of Plant Physiology, 2001, 158, 821-827.	1.6	35
183	Evaluation of the neuroprotective and antidiabetic potential of phenol-rich extracts from virgin olive oils by in vitro assays. Food Research International, 2018, 106, 558-567.	2.9	35
184	Berry anthocyanin-based films in smart food packaging: A mini-review. Food Hydrocolloids, 2022, 133, 107885.	5.6	35
185	Influence of Dekkera bruxellensis on the contents of anthocyanins, organic acids and volatile phenols of Dão red wine. Food Chemistry, 2007, 100, 64-70.	4.2	34
186	A gas chromatography–mass spectrometry multi-target method for the simultaneous analysis of three classes of metabolites in marine organisms. Talanta, 2012, 100, 391-400.	2.9	34
187	Box–Behnken factorial design to obtain a phenolic-rich extract from the aerial parts of Chelidonium majus L Talanta, 2014, 130, 128-136.	2.9	34
188	Antioxidant and Proapoptotic Activities of <i>Sclerocarya birrea</i> [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2. BioMed Research International, 2015, 2015, 1-11.	0.9	34
189	Evaluating the In Vitro Potential of Natural Extracts to Protect Lipids from Oxidative Damage. Antioxidants, 2020, 9, 231.	2.2	34
190	Rumex induratus Leaves:  Interesting Dietary Source of Potential Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 5782-5789.	2.4	33
191	Evaluation of a numerical method to predict the polyphenols content in monovarietal olive oils. Food Chemistry, 2007, 102, 976-983.	4.2	33
192	Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chemistry, 2013, 141, 3480-3485.	4.2	33
193	Fatty acids from edible sea hares: anti-inflammatory capacity in LPS-stimulated RAW 264.7 cells involves iNOS modulation. RSC Advances, 2015, 5, 8981-8987.	1.7	33
194	First report of non-coloured flavonoids inEchium plantagineumbee pollen: differentiation of isomers by liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 801-806.	0.7	32
195	Translating endoplasmic reticulum biology into the clinic: a role for ER-targeted natural products?. Natural Product Reports, 2015, 32, 705-722.	5.2	32
196	New chalcone-type compounds and 2-pyrazoline derivatives: synthesis and caspase-dependent anticancer activity. Future Medicinal Chemistry, 2020, 12, 493-509.	1.1	32
197	Do Cultivar, Geographical Location and Crop Season Influence Phenolic Profile of Walnut Leaves?. Molecules, 2008, 13, 1321-1332.	1.7	31
198	A Role for DNA Polymerase μ in the Emerging DJ _H Rearrangements of the Postgastrulation Mouse Embryo. Molecular and Cellular Biology, 2009, 29, 1266-1275.	1.1	31

#	Article	IF	CITATIONS
199	Volatile Constituents throughout Brassica oleracea L. Var. <i>acephala</i> Germination. Journal of Agricultural and Food Chemistry, 2009, 57, 6795-6802.	2.4	31
200	Effect of different extraction methodologies on the recovery of bioactive metabolites from Satureja parvifolia (Phil.) Epling (Lamiaceae). Industrial Crops and Products, 2013, 48, 49-56.	2.5	31
201	Screening of Antioxidant Compounds During Sprouting of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 377-386.	0.6	30
202	Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chemistry, 2012, 135, 748-755.	4.2	30
203	Development of hydroxybenzoic-based platforms as a solution to deliver dietary antioxidants to mitochondria. Scientific Reports, 2017, 7, 6842.	1.6	30
204	Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. Journal of Ethnopharmacology, 2020, 263, 113177.	2.0	30
205	Characterization of SpPol4, a unique X-family DNA polymerase in Schizosaccharomyces pombe. Nucleic Acids Research, 2005, 33, 4762-4774.	6.5	29
206	Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases. Marine Drugs, 2014, 12, 2539-2589.	2.2	29
207	Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Industrial Crops and Products, 2016, 94, 621-629.	2.5	29
208	HPLC-DAD-ESI/MS n profiling of phenolic compounds from Lathyrus cicera L. seeds. Food Chemistry, 2017, 214, 678-685.	4.2	29
209	Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. Arabian Journal of Chemistry, 2020, 13, 45-58.	2.3	29
210	Plant Secondary Metabolites in Cancer Chemotherapy: Where are We?. Current Pharmaceutical Biotechnology, 2012, 13, 632-650.	0.9	29
211	Methoxylated aurones from cyperus capitatus. Phytochemistry, 1997, 45, 839-840.	1.4	28
212	Antioxidative properties and phytochemical composition of Ballota nigra infusion. Food Chemistry, 2007, 105, 1396-1403.	4.2	28
213	Dracaena draco L. fruit: Phytochemical and antioxidant activity assessment. Food Research International, 2011, 44, 2182-2189.	2.9	28
214	Alkaloids in the valorization of European Lupinus spp. seeds crop. Industrial Crops and Products, 2017, 95, 286-295.	2.5	28
215	<i>Quercus ilex</i> L.: How season, Plant Organ and Extraction Procedure Can Influence Chemistry and Bioactivities. Chemistry and Biodiversity, 2017, 14, e1600187.	1.0	28
216	Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Marine Drugs, 2019, 17, 551.	2.2	28

#	Article	IF	CITATIONS
217	Analysis of non-coloured phenolics in port wines by capillary zone electrophoresis. European Food Research and Technology, 1998, 206, 161-164.	0.6	27
218	Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes. Talanta, 2007, 74, 20-31.	2.9	27
219	<i>Leucopaxillus giganteus</i> Mycelium: Effect of Nitrogen Source on Organic Acids and Alkaloids . Journal of Agricultural and Food Chemistry, 2008, 56, 4769-4774.	2.4	27
220	Characterization of Ficus carica L. cultivars by DNA and secondary metabolite analysis: Is genetic diversity reflected in the chemical composition?. Food Research International, 2012, 49, 710-719.	2.9	27
221	Study of phenolic composition and antioxidant activity of myrtle leaves and fruits as a function of maturation. European Food Research and Technology, 2016, 242, 1447-1457.	1.6	27
222	Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food and Chemical Toxicology, 2018, 118, 430-438.	1.8	27
223	DETERMINATION OF SELECTED PHENOLIC COMPOUNDS IN QUINCE JAMS BY SOLID-PHASE EXTRACTION AND HPLC. Journal of Liquid Chromatography and Related Technologies, 2001, 24, 2861-2872.	0.5	26
224	<i>Piper betle</i> Leaves: Profiling Phenolic Compounds by HPLC/DAD–ESI/MS <i>ⁿ</i> and Antiâ€cholinesterase Activity. Phytochemical Analysis, 2014, 25, 453-460.	1.2	26
225	Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 234-249.	1.4	26
226	Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chemistry, 2018, 265, 233-241.	4.2	26
227	In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chemistry, 2020, 333, 127456.	4.2	26
228	Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC). Algal Research, 2020, 49, 101947.	2.4	26
229	Phenolic composition of hazelnut leaves: Influence of cultivar, geographical origin and ripening stage. Scientia Horticulturae, 2010, 126, 306-313.	1.7	25
230	Targeted metabolites and biological activities of Cydonia oblonga Miller leaves. Food Research International, 2012, 46, 496-504.	2.9	25
231	Effects of Colored and Noncolored Phenolics of <i>Echium plantagineum</i> L. Bee Pollen in Caco-2 Cells under Oxidative Stress Induced by <i>tert</i> Butyl Hydroperoxide. Journal of Agricultural and Food Chemistry, 2015, 63, 2083-2091.	2.4	25
232	Medicinal species as MTDLs: Turnera diffusa Willd. Ex Schult inhibits CNS enzymes and delays glutamate excitotoxicity in SH-SY5Y cells via oxidative damage. Food and Chemical Toxicology, 2017, 106, 466-476.	1.8	25
233	Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 2019, 254, 91-98.	1.7	25
234	Free Amino Acids of Tronchuda Cabbage (Brassica oleracea L. Var. <i>costata</i> DC): Influence of Leaf Position (Internal or External) and Collection Time. Journal of Agricultural and Food Chemistry, 2008, 56, 5216-5221.	2.4	24

#	Article	IF	CITATIONS
235	Volatile composition of <i>Brassica oleracea</i> L. var. <i>costata</i> DC leaves using solidâ€phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 2292-2300.	0.7	24
236	DEVELOPMENT AND EVALUATION OF AN HPLC/DAD METHOD FOR THE ANALYSIS OF PHENOLIC COMPOUNDS FROM OLIVE FRUITS. Journal of Liquid Chromatography and Related Technologies, 2002, 25, 151-160.	0.5	23
237	HPLC-DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. Journal of the Serbian Chemical Society, 2008, 73, 1161-1167.	0.4	23
238	Comparing the phenolic profile of Pilocarpus pennatifolius Lem. by HPLC–DAD–ESI/MS n with respect to authentication and enzyme inhibition potential. Industrial Crops and Products, 2015, 77, 391-401.	2.5	23
239	Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules, 2019, 9, 400.	1.8	23
240	Variability in phenolic composition of hypericum Androsaemum. Natural Product Research, 2003, 17, 135-140.	1.0	22
241	Hypericum androsaemum infusion increases tert-butyl hydroperoxide-induced mice hepatotoxicity in vivo. Journal of Ethnopharmacology, 2004, 94, 345-351.	2.0	22
242	Tronchuda cabbage flavonoids uptake by Pieris brassicae. Phytochemistry, 2007, 68, 361-367.	1.4	22
243	Further Insights on the Carotenoid Profile of the Echinoderm Marthasterias glacialis L Marine Drugs, 2012, 10, 1498-1510.	2.2	22
244	Inoculation of the Nonlegume <i>Capsicum annuum</i> L. with <i>Rhizobium</i> Strains. 2. Changes in Sterols, Triterpenes, Fatty Acids, and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2014, 62, 565-573.	2.4	22
245	Neurotoxicity of the steroidal alkaloids tomatine and tomatidine is RIP1 kinase- and caspase-independent and involves the eIF21± branch of the endoplasmic reticulum. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171, 178-186.	1.2	22
246	Extraction of phospholipid-rich fractions from egg yolk and development of liposomes entrapping a dietary polyphenol with neuroactive potential. Food and Chemical Toxicology, 2019, 133, 110749.	1.8	22
247	Comparison of different greenâ€extraction techniques and determination of the phytochemical profile and antioxidant activity of <scp> <i>Echinacea angustifolia</i></scp> L. extracts. Phytochemical Analysis, 2019, 30, 547-555.	1.2	22
248	Tetraoxygenated Xanthones from Centaurium erythraea. Natural Product Research, 2000, 14, 319-323.	0.4	21
249	Phenolics Metabolism in Insects: <i>Pieris brassicae</i> â^' <i>Brassica oleracea</i> var. <i>costata</i> Ecological Duo. Journal of Agricultural and Food Chemistry, 2009, 57, 9035-9043.	2.4	21
250	Highâ€performance liquid chromatographyâ€diode array detectionâ€electrospray ionization multiâ€stage mass spectrometric screening of an insect/plant system: the case of <i>Spodoptera littoralis</i> / <i>Lycopersicon esculentum</i> phenolics and alkaloids. Rapid Communications in Mass Spectrometry, 2011, 25, 1972-1980.	0.7	21
251	Influence of Tunisian Ficus carica fruit variability in phenolic profiles and in vitro radical scavenging potential. Revista Brasileira De Farmacognosia, 2012, 22, 1282-1289.	0.6	21
252	HPLC-DAD-ESI/MSn analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 163-172.	1.4	21

#	Article	IF	CITATIONS
253	Beverages of lemon juice and exotic noni and papaya with potential for anticholinergic effects. Food Chemistry, 2015, 170, 16-21.	4.2	21
254	A Comparative Study on Phytochemical Profiles and Biological Activities of Sclerocarya birrea (A.Rich.) Hochst Leaf and Bark Extracts. International Journal of Molecular Sciences, 2018, 19, 186.	1.8	21
255	Improving the knowledge on <i>Piper betle</i> : Targeted metabolite analysis and effect on acetylcholinesterase. Journal of Separation Science, 2010, 33, 3168-3176.	1.3	20
256	Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress. Plant Science, 2013, 198, 1-6.	1.7	20
257	In Vitro Anti-Inflammatory and Cytotoxic Effects of Aqueous Extracts from the Edible Sea Anemones Anemonia sulcata and Actinia equina. International Journal of Molecular Sciences, 2017, 18, 653.	1.8	20
258	In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. Journal of Ethnopharmacology, 2018, 211, 247-255.	2.0	20
259	Phlorotannins from Fucales: potential to control hyperglycemia and diabetes-related vascular complications. Journal of Applied Phycology, 2019, 31, 3143-3152.	1.5	20
260	Isolation and Structural Elucidation of 5-Formyl-2,3-Dihydroisocoumarin fromCentaurium ErythraeaAerial Parts. Natural Product Research, 2003, 17, 361-364.	1.0	19
261	Relevant principal component analysis applied to the characterisation of Portuguese heather honey. Natural Product Research, 2008, 22, 1560-1582.	1.0	19
262	Evaluation of Antioxidant, Anticholinesterase, and Antidiabetic Potential of Dry Leaves and Stems in <i>Tamarix aphylla</i> Growing Wild in Tunisia. Chemistry and Biodiversity, 2016, 13, 1747-1755.	1.0	19
263	Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. Journal of Ethnopharmacology, 2020, 248, 112312.	2.0	19
264	Enhancement of the anti-inflammatory properties of grape pomace treated by <i>Trametes versicolor</i> . Food and Function, 2020, 11, 680-688.	2.1	19
265	Echium plantagineum L. honey: Search of pyrrolizidine alkaloids and polyphenols, anti-inflammatory potential and cytotoxicity. Food Chemistry, 2020, 328, 127169.	4.2	19
266	Oak leaf extract as topical antioxidant: Free radical scavenging and iron chelating activities and <i>in vivo</i> skin irritation potential. BioFactors, 2008, 33, 267-279.	2.6	18
267	Effects of Echium plantagineum L. Bee Pollen on Basophil Degranulation: Relationship with Metabolic Profile. Molecules, 2014, 19, 10635-10649.	1.7	18
268	Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis, 2015, 67, 25-32.	1.2	18
269	Chemical profiling of edible seaweed (Ochrophyta) extracts and assessment of their in vitro effects on cell-free enzyme systems and on the viability of glutamate-injured SH-SY5Y cells. Food and Chemical Toxicology, 2018, 116, 196-206.	1.8	18
270	Insights into Natural Products in Inflammation. International Journal of Molecular Sciences, 2018, 19, 644.	1.8	18

Paula B. Andrade

#	Article	IF	CITATIONS
271	Modulation of Basophils' Degranulation and Allergy-Related Enzymes by Monomeric and Dimeric Naphthoquinones. PLoS ONE, 2014, 9, e90122.	1.1	18
272	Development of an HPLC/Diode-Array Detector Method for Simultaneous Determination of Seven Hydroxy-Cinnamic Acids in Green Coffee. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 2023-2030.	0.5	17
273	Phenolic compounds from Jacaranda caroba (Vell.) A. DC.: Approaches to neurodegenerative disorders. Food and Chemical Toxicology, 2013, 57, 91-98.	1.8	17
274	In vitro studies of α-glucosidase inhibitors and antiradical constituents of Glandora diffusa (Lag.) D.C. Thomas infusion. Food Chemistry, 2013, 136, 1390-1398.	4.2	17
275	Phenolic profile of Douro wines and evaluation of their NO scavenging capacity in LPS-stimulated RAW 264.7 macrophages. Food Chemistry, 2014, 163, 16-22.	4.2	17
276	Isolation of Cells Specialized in Anticancer Alkaloid Metabolism by Fluorescence-Activated Cell Sorting. Plant Physiology, 2016, 171, 2371-2378.	2.3	17
277	HPLC-DAD-ESI/MSn phenolic profile and in vitro biological potential of Centaurium erythraea Rafn aqueous extract. Food Chemistry, 2019, 278, 424-433.	4.2	17
278	Jasonia glutinosa (L.) DC., a traditional herbal medicine, reduces inflammation, oxidative stress and protects the intestinal barrier in a murine model of colitis. Inflammopharmacology, 2020, 28, 1717-1734.	1.9	17
279	Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Marine Drugs, 2020, 18, 654.	2.2	17
280	The biotechnological potential of Asparagopsis armata: What is known of its chemical composition, bioactivities and current market?. Algal Research, 2021, 60, 102534.	2.4	17
281	Identification of 5,5â€2-oxy-dimethylene-bis(2-furaldehyde) by thermal decomposition of 5.5â€2-oxy-dimethylene-bis(2-furaldehyde) by thermal decomposition of 5-hydroxymethyl-2-furfuraldehyde. Food Chemistry, 1998, 63, 473-477.	4.2	16
282	Protective activity of Hypericum androsaemum infusion against tert-butyl hydroperoxide-induced oxidative damage in isolated rat hepatocytes. Journal of Ethnopharmacology, 2004, 92, 79-84.	2.0	16
283	HPLC–DAD analysis and in vitro enzyme inhibition: An integrated approach to predict herbal binary mixture behaviour employing median effect equation. Microchemical Journal, 2015, 119, 176-182.	2.3	16
284	Zinc Accumulation and Tolerance in <i>Solanum nigrum</i> are Plant Growth Dependent. International Journal of Phytoremediation, 2015, 17, 272-279.	1.7	16
285	Accumulation of primary and secondary metabolites in edible jackfruit seed tissues and scavenging of reactive nitrogen species. Food Chemistry, 2017, 233, 85-95.	4.2	16
286	Anti-inflammatory properties of the stem bark from the herbal drug Vitex peduncularis Wall. ex Schauer and characterization of its polyphenolic profile. Food and Chemical Toxicology, 2017, 106, 8-16.	1.8	16
287	Further insights on tomato plant: Cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food and Chemical Toxicology, 2017, 109, 386-392.	1.8	16
288	UHPLC-MS/MS profiling of Aplysia depilans and assessment of its potential therapeutic use: Interference on iNOS expression in LPS-stimulated RAW 264.7 macrophages and caspase-mediated pro-apoptotic effect on SH-SY5Y cells. Journal of Functional Foods, 2017, 37, 164-175.	1.6	16

#	Article	IF	CITATIONS
289	Anti-Inflammatory Effects of 5α,8α-Epidioxycholest-6-en-3β-ol, a Steroidal Endoperoxide Isolated from Aplysia depilans, Based on Bioguided Fractionation and NMR Analysis. Marine Drugs, 2019, 17, 330.	2.2	16
290	Biological Evaluation of Naproxen–Dehydrodipeptide Conjugates with Self-Hydrogelation Capacity as Dual LOX/COX Inhibitors. Pharmaceutics, 2020, 12, 122.	2.0	16
291	Targeted Metabolite Analysis and Antioxidant Potential of <i>Rumex induratus</i> . Journal of Agricultural and Food Chemistry, 2008, 56, 8184-8194.	2.4	15
292	HPLCâ€PADâ€atmospheric pressure chemical ionizationâ€MS metabolite profiling of cytotoxic carotenoids from the echinoderm <i>Marthasterias glacialis</i> (spiny seaâ€star). Journal of Separation Science, 2010, 33, 2250-2257.	1.3	15
293	Structural characterization of phenolics and betacyanins in <i>Gomphrena globosa</i> by highâ€performance liquid chromatographyâ€diode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3441-3446.	0.7	15
294	Assessing Jasminum grandiflorum L. authenticity by HPLC-DAD-ESI/MSn and effects on physiological enzymes and oxidative species. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 157-161.	1.4	15
295	Benzoquinones from Cyperus spp. trigger IRE1α-independent and PERK-dependent ER stress in human stomach cancer cells and are novel proteasome inhibitors. Phytomedicine, 2019, 63, 153017.	2.3	15
296	Pennyroyal and gastrointestinal cells: multi-target protection of phenolic compounds against t-BHP-induced toxicity. RSC Advances, 2015, 5, 41576-41584.	1.7	14
297	Chemical findings and in vitro biological studies to uphold the use of Ficus exasperata Vahl leaf and stem bark. Food and Chemical Toxicology, 2018, 112, 134-144.	1.8	14
298	Methylaurones from Cyperus capitatus. Phytochemistry, 1998, 48, 1429-1432.	1.4	13
299	Assessing the antioxidative properties and chemical composition ofLinaria vulgarisinfusion. Natural Product Research, 2008, 22, 735-746.	1.0	13
300	Targeted Metabolite Analysis and Biological Activity of <i>Pieris brassicae</i> Fed with <i>Brassica rapa</i> var. <i>rapa</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 483-489.	2.4	13
301	Headspace solid-phase microextraction and gas chromatography/ion trap-mass spectrometry applied to a living system: Pieris brassicae fed with kale. Food Chemistry, 2010, 119, 1681-1693.	4.2	13
302	Metabolic and biological prospecting of Coreopsis tinctoria. Revista Brasileira De Farmacognosia, 2012, 22, 350-358.	0.6	13
303	Digestive Cland from Aplysia depilans Gmelin: Leads for Inflammation Treatment. Molecules, 2015, 20, 15766-15780.	1.7	13
304	Volatile phenols depletion in red wine using molecular imprinted polymers. Journal of Food Science and Technology, 2015, 52, 7735-7746.	1.4	13
305	Spontaneous variation regarding grape berry skin color: A comprehensive study of berry development by means of biochemical and molecular markers. Food Research International, 2017, 97, 149-161.	2.9	13
306	Flavonoid Composition of Salacia senegalensis (Lam.) DC. Leaves, Evaluation of Antidermatophytic Effects, and Potential Amelioration of the Associated Inflammatory Response. Molecules, 2019, 24, 2530.	1.7	13

#	Article	IF	CITATIONS
307	Activation of caspase-3 in gastric adenocarcinoma AGS cells by Xylopia aethiopica (Dunal) A. Rich. fruit and characterization of its phenolic fingerprint by HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2. Food Research International, 2021, 141, 110121.	2.9	13
308	Screening of Antioxidant Phenolic Compounds Produced by In Vitro Shoots of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 230-240.	0.6	12
309	Determination of eighty-one volatile organic compounds in dietary Rumex induratus leaves by GC/IT-MS, using different extractive techniques. Microchemical Journal, 2009, 93, 67-72.	2.3	12
310	Phytochemical profiles and inhibitory effect on free radical-induced human erythrocyte damage of Dracaena draco leaf: A potential novel antioxidant agent. Food Chemistry, 2011, 124, 927-934.	4.2	12
311	Trichilia catigua and Turnera diffusa extracts: In vitro inhibition of tyrosinase, antiglycation activity and effects on enzymes and pathways engaged in the neuroinflammatory process. Journal of Ethnopharmacology, 2021, 271, 113865.	2.0	12
312	Recent Trends in High Throughput Analysis and Antioxidant Potential Screening for Phenolics. Current Pharmaceutical Analysis, 2008, 4, 137-150.	0.3	11
313	Pieris brassicae Inhibits Xanthine Oxidase. Journal of Agricultural and Food Chemistry, 2009, 57, 2288-2294.	2.4	11
314	Water extracts of Brassica oleracea var. costata potentiate paraquat toxicity to rat hepatocytes in vitro. Toxicology in Vitro, 2009, 23, 1131-1138.	1.1	11
315	Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide. Molecules, 2012, 17, 5269-5288.	1.7	11
316	Assessing the anthocyanic composition of Port wines and musts and their free radical scavenging capacity. Food Chemistry, 2012, 131, 885-892.	4.2	11
317	Nano- and Microdelivery Systems for Marine Bioactive Lipids. Marine Drugs, 2014, 12, 6014-6027.	2.2	11
318	Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity. BioMed Research International, 2014, 2014, 1-10.	0.9	11
319	The chemical composition on fingerprint of Glandora diffusa and its biological properties. Arabian Journal of Chemistry, 2017, 10, 583-595.	2.3	11
320	Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine and Pharmacotherapy, 2021, 140, 111756.	2.5	11
321	Phenolic Profiles of Portuguese Olives. , 2010, , 177-186.		10
322	Toxicity and structure-activity relationship (SAR) of α,β-dehydroamino acids against human cancer cell lines. Toxicology in Vitro, 2018, 47, 26-37.	1.1	10
323	Profiling of Heterobranchia Sea Slugs from Portuguese Coastal Waters as Producers of Anti-Cancer and Anti-Inflammatory Agents. Molecules, 2018, 23, 1027.	1.7	10
324	Host-defense peptides AC12, DK16 and RC11 with immunomodulatory activity isolated from Hypsiboas raniceps skin secretion. Peptides, 2019, 113, 11-21.	1.2	10

#	Article	IF	CITATIONS
325	Adding value to polyvinylpolypyrrolidone winery residue: A resource of polyphenols with neuroprotective effects and ability to modulate type 2 diabetes-relevant enzymes. Food Chemistry, 2020, 329, 127168.	4.2	10
326	Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chemistry, 2021, 342, 128323.	4.2	10
327	A nanophytosomes formulation based on elderberry anthocyanins and Codium lipids to mitigate mitochondrial dysfunctions. Biomedicine and Pharmacotherapy, 2021, 143, 112157.	2.5	10
328	Fatty Acids in Marine Organisms: In the Pursuit of Bioactive Agents. Current Pharmaceutical Analysis, 2011, 7, 108-119.	0.3	10
329	Naphthoquinones ofDiospyros chamaethamnus. Planta Medica, 1998, 64, 391-391.	0.7	9
330	<i>Brassica oleracea</i> var. <i>costata</i> : comparative study on organic acids and biomass production with other cabbage varieties. Journal of the Science of Food and Agriculture, 2009, 89, 1083-1089.	1.7	9
331	Exploratory Studies on the <i>in Vitro</i> Antiâ€inflammatory Potential of Two Herbal Teas (<i>Annona) Tj ETQq1 Chemistry and Biodiversity, 2017, 14, e1700002.</i>	1 0.7843 1.0	14 rgBT /0\ 9
332	Apparent digestibility coefficients of European grain legumes in rainbow trout (<i>Oncorhynchus) Tj ETQq0 0 0 rg</i>	BT/Overlo	oçk 10 Tf 50
333	An egg yolk's phospholipid-pennyroyal nootropic nanoformulation modulates monoamino oxidase-A (MAO-A) activity in SH-SY5Y neuronal model. Journal of Functional Foods, 2018, 46, 335-344.	1.6	9
334	HPLC Determination of Free Amino Acids Profile of Dão Red Wine: Effect of Dekkera bruxellensis Contamination. Journal of Liquid Chromatography and Related Technologies, 2007, 30, 1371-1383.	0.5	8
335	Recent Patents on Proteasome Inhibitors of Natural Origin. Recent Patents on Anti-Cancer Drug Discovery, 2017, 12, 4-15.	0.8	8
336	Adding value to marine invaders by exploring the potential of Sargassum muticum (Yendo) Fensholt phlorotannin extract on targets underlying metabolic changes in diabetes. Algal Research, 2021, 59, 102455.	2.4	8
337	Homo-monoterpenic compounds as chemical markers for Cydonia oblonga Miller. Food Chemistry, 2007, 100, 331-338.	4.2	7
338	Metabolic fate of dietary volatile compounds in Pieris brassicae. Microchemical Journal, 2009, 93, 99-109.	2.3	7
339	Relationships of Echium plantagineum L. bee pollen, dietary flavonoids and their colonic metabolites with cytochrome P450 enzymes and oxidative stress. RSC Advances, 2016, 6, 6084-6092.	1.7	7
340	Cassia sieberiana DC. leaves modulate LPS-induced inflammatory response in THP-1Âcells and inhibit eicosanoid-metabolizing enzymes. Journal of Ethnopharmacology, 2021, 269, 113746.	2.0	7
341	Mitochondria research and neurodegenerative diseases: On the track to understanding the biological world of high complexity. Mitochondrion, 2022, 65, 67-79.	1.6	7
342	Lessons from the Sea. Studies in Natural Products Chemistry, 2013, 40, 205-228.	0.8	6

#	Article	IF	CITATIONS
343	A New Iced Tea Base Herbal Beverage with Spergularia rubra Extract: Metabolic Profile Stability and In Vitro Enzyme Inhibition. Journal of Agricultural and Food Chemistry, 2013, 61, 8650-8656.	2.4	6
344	Synthesis and preliminary biological evaluation of new phenolic and catecholic dehydroamino acid derivatives. Tetrahedron, 2017, 73, 6199-6209.	1.0	6
345	Hydrophilic Carbon Nanomaterials: Characterisation by Physical, Chemical, and Biological Assays. ChemMedChem, 2019, 14, 699-711.	1.6	6
346	New Insight on the Bioactivity of Solanum aethiopicum Linn. Growing in Basilicata Region (Italy): Phytochemical Characterization, Liposomal Incorporation, and Antioxidant Effects. Pharmaceutics, 2022, 14, 1168.	2.0	6
347	Screening of a Marine Algal Extract for Antifungal Activities. Methods in Molecular Biology, 2015, 1308, 411-420.	0.4	5
348	Toxicity of phenolipids: Protocatechuic acid alkyl esters trigger disruption of mitochondrial membrane potential and caspase activation in macrophages. Chemistry and Physics of Lipids, 2017, 206, 16-27.	1.5	5
349	Valorisation of Mangifera indica crop biomass residues. Industrial Crops and Products, 2018, 124, 284-293.	2.5	5
350	Trace elements in wild edible Aplysia species: Relationship with the desaturation–elongation indexes of fatty acids. Chemosphere, 2018, 208, 682-690.	4.2	5
351	Novel styrylpyrazole-glucosides and their dioxolo-bridged doppelgangers: synthesis and cytotoxicity. New Journal of Chemistry, 2019, 43, 8299-8310.	1.4	5
352	Inhibition of Proinflammatory Enzymes and Attenuation of IL-6 in LPS-Challenged RAW 264.7 Macrophages Substantiates the Ethnomedicinal Use of the Herbal Drug Homalium bhamoense Cubitt & W.W.Sm. International Journal of Molecular Sciences, 2020, 21, 2421.	1.8	5
353	HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn characterization of polyphenols in the leaves of Neocarya macrophylla (Sabine) Prance ex F. White and cytotoxicity to gastric carcinoma cells. Food Research International, 2022, 155, 111082.	2.9	5
354	Brassica oleracea L. Var. costata DC and Pieris brassicae L. Aqueous Extracts Reduce Methyl Methanesulfonate-Induced DNA Damage in V79 Hamster Lung Fibroblasts. Journal of Agricultural and Food Chemistry, 2012, 60, 5380-5387.	2.4	4
355	Ethnopharmacological use of Cymbopogon citratus (DC.) Stapf and Cymbopogon schoenanthus (L.) Spreng.: Anti-inflammatory potential of phenol-rich extracts. Porto Biomedical Journal, 2017, 2, 216-217.	0.4	4
356	Centaurium Erythraea Extracts Exert Vascular Effects through Endothelium- and Fibroblast-dependent Pathways. Planta Medica, 2020, 86, 121-131.	0.7	4
357	Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals, 2021, 11, 3557.	1.0	4
358	Trichilia catigua and Turnera diffusa phyto-phospholipid nanostructures: Physicochemical characterization and bioactivity in cellular models of induced neuroinflammation and neurotoxicity. International Journal of Pharmaceutics, 2022, 620, 121774.	2.6	4
359	Depressive Disorders: Prevalence, Costs, and Theories. , 2016, , 1-41.		3
360	GC-MS Lipidomic Profiling of the Echinoderm Marthasterias glacialis and Screening for Activity Against Human Cancer and Non-Cancer Cell Lines. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 450-457.	0.6	3

#	Article	IF	CITATIONS
361	"Omics―Technologies. , 2015, , 25-39.		2
362	Exploring Montagu's crab: Primary and secondary metabolites and enzyme inhibition. Arabian Journal of Chemistry, 2019, 12, 4017-4025.	2.3	2
363	Gustavia gracillima Miers. flowers effects on enzymatic targets underlying metabolic disorders and characterization of its polyphenolic content by HPLC-DAD-ESI/MS. Food Research International, 2020, 137, 109694.	2.9	2
364	OS COMPOSTOS FENÓLICOS COMO POSSÃVEIS MARCADORES DA AUTENTICIDADE DOS PRODUTOS DE ORIGEM VEGETAL. Ciencia Y Tecnologia Alimentaria, 1997, 1, 56-63.	0.4	1
365	Brassica Seeds. , 2011, , 83-91.		1
366	Different Effects on Vigna unguiculata Plants After the Inoculation with Strains from Two Bradyrhizobium Symbiovars. , 2016, , 131-140.		1
367	Topical fixed-dose combinations: Current in vitro methodologies for pre-clinical development. International Journal of Pharmaceutics, 2022, 617, 121621.	2.6	1
368	Valorisation of the industrial waste of Chukrasia tabularis A.Juss.: Characterization of the leaves phenolic constituents and antidiabetic-like effects. Industrial Crops and Products, 2022, 185, 115100.	2.5	1
369	Phenolic Compounds in Catharanthus roseus. , 2013, , 2093-2106.		0
370	Homarine Alkyl Ester Derivatives as Promising Acetylcholinesterase Inhibitors. ChemMedChem, 2021, 16, 3315-3325.	1.6	0