Nicola Marzari

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7067876/nicola-marzari-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

256 papers

43,760 citations

70 h-index 208 g-index

275 ext. papers

52,683 ext. citations

7.1 avg, IF

7.5 L-index

#	Paper	IF	Citations
256	Structure Evolution of Graphitic Surface upon Oxidation: Insights by Scanning Tunneling Microscopy <i>Jacs Au</i> , 2022 , 2, 723-730		1
255	Phonon-Assisted Luminescence in Defect Centers from Many-Body Perturbation Theory <i>Physical Review Letters</i> , 2022 , 128, 167401	7.4	3
254	First-principles predictions of Hall and drift mobilities in semiconductors. <i>Physical Review Research</i> , 2021 , 3,	3.9	5
253	Thermomechanical properties of honeycomb lattices from internal-coordinates potentials: the case of graphene and hexagonal boron nitride. <i>2D Materials</i> , 2021 , 8, 015026	5.9	2
252	High Li-ion conductivity in tetragonal LGPO: A comparative first-principles study against known LISICON and LGPS phases. <i>Physical Review Materials</i> , 2021 , 5,	3.2	2
251	Prediction of Phonon-Mediated Superconductivity with High Critical Temperature in the Two-Dimensional Topological Semimetal WN. <i>Nano Letters</i> , 2021 , 21, 3435-3442	11.5	8
250	Theoretical Prediction of Two-Dimensional Materials, Behavior, and Properties. ACS Nano, 2021 , 15, 59	95 <u>9</u> 45 9 7	'6 8
249	Electronic-structure methods for materials design. <i>Nature Materials</i> , 2021 , 20, 736-749	27	24
248	Electronic Structure of Water from Koopmans-Compliant Functionals. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3923-3930	6.4	O
247	Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows. <i>Computational Materials Science</i> , 2021 , 187, 110086	3.2	18
246	Self-consistent Hubbard parameters from density-functional perturbation theory in the ultrasoft and projector-augmented wave formulations. <i>Physical Review B</i> , 2021 , 103,	3.3	14
245	AiiDAlab Ian ecosystem for developing, executing, and sharing scientific workflows. <i>Computational Materials Science</i> , 2021 , 188, 110165	3.2	18
244	OPTIMADE, an API for exchanging materials data. <i>Scientific Data</i> , 2021 , 8, 217	8.2	8
243	Shear and Breathing Modes of Layered Materials. ACS Nano, 2021,	16.7	4
242	Gas Transport across Carbon Nitride Nanopores: A Comparison of van der Waals Functionals against the Random-Phase Approximation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18896-18904	3.8	O
241	Common workflows for computing material properties using different quantum engines. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	4
240	Gate Control of Spin-Layer-Locking FETs and Application to Monolayer LuIO. <i>Nano Letters</i> , 2021 , 21, 76	531 1 7 6 3	861

(2020-2021)

239	Ablinitio Electron-Phonon Interactions in Correlated Electron Systems. <i>Physical Review Letters</i> , 2021 , 127, 126404	7.4	3
238	Evidence of Large Polarons in Photoemission Band Mapping of the Perovskite Semiconductor CsPbBr_{3}. <i>Physical Review Letters</i> , 2020 , 124, 206402	7.4	36
237	The solid-state Li-ion conductor Li7TaO6: A combined computational and experimental study. <i>Solid State Ionics</i> , 2020 , 347, 115226	3.3	3
236	2-D Materials for Ultrascaled Field-Effect Transistors: One Hundred Candidates under the Microscope. <i>ACS Nano</i> , 2020 , 14, 8605-8615	16.7	20
235	Bulk and Surface Electronic Structure of the Dual-Topology Semimetal Pt_{2}HgSe_{3}. <i>Physical Review Letters</i> , 2020 , 124, 106402	7.4	20
234	Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials. <i>Physical Review B</i> , 2020 , 101,	3.3	14
233	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001	5.9	179
232	Large-scale synthesis of crystalline g-CN nanosheets and high-temperature H sieving from assembled films. <i>Science Advances</i> , 2020 , 6, eaay9851	14.3	59
231	Generalization of Fourier Law into Viscous Heat Equations. <i>Physical Review X</i> , 2020 , 10,	9.1	16
230	Intrinsic edge excitons in two-dimensional MoS2. <i>Physical Review B</i> , 2020 , 101,	3.3	2
229	Pulay forces in density-functional theory with extended Hubbard functionals: From nonorthogonalized to orthogonalized manifolds. <i>Physical Review B</i> , 2020 , 102,	3.3	4
228	Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3. <i>Physical Review Research</i> , 2020 , 2,	3.9	11
227	Self-consistent DFT+U+V study of oxygen vacancies in SrTiO3. <i>Physical Review Research</i> , 2020 , 2,	3.9	16
226	Electronic structure of pristine and Ni-substituted LaFeO3 from near edge x-ray absorption fine structure experiments and first-principles simulations. <i>Physical Review Research</i> , 2020 , 2,	3.9	7
225	On the Kinetic Theory of Thermal Transport in Crystals 2020 , 767-808		
224	Operando XANES from first-principles and its application to iridium oxide. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 10807-10818	3.6	10
223	Wannier90 as a community code: new features and applications. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 165902	1.8	239
222	High-throughput computational screening for solid-state Li-ion conductors. <i>Energy and Environmental Science</i> , 2020 , 13, 928-948	35.4	42

221	Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory. <i>ACS Catalysis</i> , 2020 , 10, 12716-12726	13.1	6
220	Automated high-throughput Wannierisation. Npj Computational Materials, 2020, 6,	10.9	15
219	Efficient Kr/Xe separation from triangular g-C3N4 nanopores, a simulation study. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17747-17755	13	3
218	Electrosorption at metal surfaces from first principles. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	25
217	AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. <i>Scientific Data</i> , 2020 , 7, 300	8.2	49
216	Materials Cloud, a platform for open computational science. <i>Scientific Data</i> , 2020 , 7, 299	8.2	70
215	Li4\(\mathbb{U}\)Ge1\(\mathbb{P}\)xO4, a Potential Solid-State Electrolyte for All-Oxide Microbatteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 9910-9917	6.1	4
214	Quantum ESPRESSO toward the exascale. <i>Journal of Chemical Physics</i> , 2020 , 152, 154105	3.9	227
213	Yttrium Tantalum Oxynitride Multiphases as Photoanodes for Water Oxidation. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 26211-26217	3.8	7
212	Solvent-Aware Interfaces in Continuum Solvation. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 1996-2009	6.4	33
211	Grand canonical simulations of electrochemical interfaces in implicit solvation models. <i>Journal of Chemical Physics</i> , 2019 , 150, 041730	3.9	80
21 0	Unified theory of thermal transport in crystals and glasses. <i>Nature Physics</i> , 2019 , 15, 809-813	16.2	94
209	Equipartition of Energy Defines the Size-Thickness Relationship in Liquid-Exfoliated Nanosheets. <i>ACS Nano</i> , 2019 , 13, 7050-7061	16.7	71
208	Valley-Engineering Mobilities in Two-Dimensional Materials. <i>Nano Letters</i> , 2019 , 19, 3723-3729	11.5	10
207	Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 3710-3720	6.4	9
206	Self-consistent site-dependent DFT+U study of stoichiometric and defective SrMnO3. <i>Physical Review B</i> , 2019 , 99,	3.3	21
205	SIMPLE code: Optical properties with optimal basis functions. <i>Computer Physics Communications</i> , 2019 , 240, 106-119	4.2	11
204	Predicting synthesizability. <i>Journal Physics D: Applied Physics</i> , 2019 , 52,	3	161

203	Enhanced Electron-Phonon Interaction in Multivalley Materials. <i>Physical Review X</i> , 2019 , 9,	9.1	25
202	Functional Extrapolations to Tame Unbound Anions in Density-Functional Theory Calculations. Journal of Chemical Theory and Computation, 2019 , 15, 6313-6322	6.4	5
201	Absolute band alignment at semiconductor-water interfaces using explicit and implicit descriptions for liquid water. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	33
200	A High-Throughput Computational Study Driven by the AiiDA Materials Informatics Framework and the PAULING FILE as Reference Database 2019 , 149-170		1
199	Relative Abundance of [Formula: see text] Topological Order in Exfoliable Two-Dimensional Insulators. <i>Nano Letters</i> , 2019 , 19, 8431-8440	11.5	27
198	Energetics and cathode voltages of LiMPO4 olivines (M=Fe, Mn) from extended Hubbard functionals. <i>Physical Review Materials</i> , 2019 , 3,	3.2	19
197	Unsupervised landmark analysis for jump detection in molecular dynamics simulations. <i>Physical Review Materials</i> , 2019 , 3,	3.2	17
196	Photorealistic modelling of metals from first principles. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	10
195	Halogen-bond driven self-assembly of perfluorocarbon monolayers on silicon nitride. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24445-24453	13	6
194	An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5951-5963	3.8	78
193	Continuum models of the electrochemical diffuse layer in electronic-structure calculations. <i>Journal of Chemical Physics</i> , 2019 , 150, 041722	3.9	43
192	Koopmans-Compliant Functionals and Potentials and Their Application to the GW100 Test Set. <i>Journal of Chemical Theory and Computation</i> , 2019 , 15, 1905-1914	6.4	15
191	Screening in Orbital-Density-Dependent Functionals. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 2549-2557	6.4	8
190	Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. <i>Nature Nanotechnology</i> , 2018 , 13, 246-252	28.7	874
189	Prediction of a Large-Gap and Switchable Kane-Mele Quantum Spin Hall Insulator. <i>Physical Review Letters</i> , 2018 , 120, 117701	7.4	45
188	Nanoscale surface dynamics of BiTe(111): observation of a prominent surface acoustic wave and the role of van der Waals interactions. <i>Nanoscale</i> , 2018 , 10, 14627-14636	7.7	24
187	Hubbard parameters from density-functional perturbation theory. <i>Physical Review B</i> , 2018 , 98,	3.3	77
186	Potential-induced nanoclustering of metallic catalysts during electrochemical CO reduction. <i>Nature Communications</i> , 2018 , 9, 3117	17.4	163

185	. IEEE Transactions on Electron Devices, 2018 , 65, 4180-4187	2.9	15
184	Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron. <i>Physical Review Materials</i> , 2018 , 2,	3.2	115
183	Modeling lithium-ion solid-state electrolytes with a pinball model. <i>Physical Review Materials</i> , 2018 , 2,	3.2	23
182	Mobility of two-dimensional materials from first principles in an accurate and automated framework. <i>Physical Review Materials</i> , 2018 , 2,	3.2	51
181	Precision and efficiency in solid-state pseudopotential calculations. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	181
180	Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	34
179	Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba0.5Sr0.5Co0.8Fe0.2O2+hand PrBaCo2O5+ll Advanced Functional Materials, 2018, 28, 18043	355.6	41
178	On the Kinetic Theory of Thermal Transport in Crystals 2018 , 1-42		
177	Koopmans-Compliant Spectral Functionals for Extended Systems. <i>Physical Review X</i> , 2018 , 8,	9.1	18
176	Vibrational and thermoelastic properties of bcc iron from selected EAM potentials. <i>Computational Materials Science</i> , 2018 , 152, 99-106	3.2	4
175	Piezoelectric softening by Nb substitution in (Ba,Pb)ZrO3 ceramics. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1885-1895	3.8	3
174	Breakdown of Optical Phonons' Splitting in Two-Dimensional Materials. <i>Nano Letters</i> , 2017 , 17, 3758-37	763 .5	84
173	Soft-Sphere Continuum Solvation in Electronic-Structure Calculations. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 3829-3845	6.4	64
172	Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction. <i>Chemistry of Materials</i> , 2017 , 29, 5182-5191	9.6	120
171	Determination of Conduction and Valence Band Electronic Structure of LaTiO N Thin Film. <i>ChemSusChem</i> , 2017 , 10, 2099-2106	8.3	13
170	Unraveling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide. <i>ACS Catalysis</i> , 2017 , 7, 3245-3256	13.1	74
169	Advanced capabilities for materials modelling with Quantum ESPRESSO. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 465901	1.8	2275
168	Boltzmann Transport in Nanostructures as a Friction Effect. <i>Nano Letters</i> , 2017 , 17, 4675-4682	11.5	30

167	Enhanced Proton Conductivity in Y-Doped BaZrO via Strain Engineering. Advanced Science, 2017, 4, 170	00 4 68	27
166	A posteriori metadata from automated provenance tracking: integration of AiiDA and TCOD. <i>Journal of Cheminformatics</i> , 2017 , 9, 56	8.6	15
165	Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes. <i>Physical Review Materials</i> , 2017 , 1,	3.2	58
164	Transport waves as crystal excitations. <i>Physical Review Materials</i> , 2017 , 1,	3.2	14
163	Asymmetric structure of 90? domain walls and interactions with defects in PbTiO3. <i>Physical Review B</i> , 2016 , 93,	3.3	17
162	Thermal Transport in Crystals as a Kinetic Theory of Relaxons. <i>Physical Review X</i> , 2016 , 6,	9.1	53
161	Performance of arsenene and antimonene double-gate MOSFETs from first principles. <i>Nature Communications</i> , 2016 , 7, 12585	17.4	224
160	First-Principles Photoemission Spectroscopy of DNA and RNA Nucleobases from Koopmans-Compliant Functionals. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 3948-58	6.4	9
159	Reproducibility in density functional theory calculations of solids. <i>Science</i> , 2016 , 351, aad3000	33.3	784
158	Materials modelling: The frontiers and the challenges. <i>Nature Materials</i> , 2016 , 15, 381-2	27	31
158 157	Materials modelling: The frontiers and the challenges. <i>Nature Materials</i> , 2016 , 15, 381-2 The Electronic Thermal Conductivity of Graphene. <i>Nano Letters</i> , 2016 , 16, 2439-43	27	31 92
157	The Electronic Thermal Conductivity of Graphene. <i>Nano Letters</i> , 2016 , 16, 2439-43 AiiDA: automated interactive infrastructure and database for computational science.	11.5	92
157 156	The Electronic Thermal Conductivity of Graphene. <i>Nano Letters</i> , 2016 , 16, 2439-43 AiiDA: automated interactive infrastructure and database for computational science. <i>Computational Materials Science</i> , 2016 , 111, 218-230 A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. <i>Journal of</i>	3.2	92
157 156 155	The Electronic Thermal Conductivity of Graphene. <i>Nano Letters</i> , 2016 , 16, 2439-43 AiiDA: automated interactive infrastructure and database for computational science. <i>Computational Materials Science</i> , 2016 , 111, 218-230 A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. <i>Journal of Chemical Physics</i> , 2016 , 144, 014103 First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO(_3) perovskite	3.2 3.9	92 275 69
157 156 155	The Electronic Thermal Conductivity of Graphene. <i>Nano Letters</i> , 2016 , 16, 2439-43 AiiDA: automated interactive infrastructure and database for computational science. <i>Computational Materials Science</i> , 2016 , 111, 218-230 A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. <i>Journal of Chemical Physics</i> , 2016 , 144, 014103 First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO(_3) perovskite under strain conditions. <i>Materials for Renewable and Sustainable Energy</i> , 2016 , 5, 1 Rippling ultrafast dynamics of suspended 2D monolayers, graphene. <i>Proceedings of the National</i>	3.2 3.9 4.7	92 275 69
157 156 155 154	The Electronic Thermal Conductivity of Graphene. Nano Letters, 2016, 16, 2439-43 AiiDA: automated interactive infrastructure and database for computational science. Computational Materials Science, 2016, 111, 218-230 A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments. Journal of Chemical Physics, 2016, 144, 014103 First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO(_3) perovskite under strain conditions. Materials for Renewable and Sustainable Energy, 2016, 5, 1 Rippling ultrafast dynamics of suspended 2D monolayers, graphene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6555-E6561	3.2 3.9 4.7	92 275 69 7 27

149	Self-consistent continuum solvation for optical absorption of complex molecular systems in solution. <i>Journal of Chemical Physics</i> , 2015 , 142, 034111	3.9	14
148	First-principles investigation of organic photovoltaic materials C60, C70, [C60]PCBM, and bis-[C60]PCBM using a many-body G0W0-Lanczos approach. <i>Physical Review B</i> , 2015 , 91,	3.3	17
147	Variational minimization of orbital-density-dependent functionals. <i>Physical Review B</i> , 2015 , 91,	3.3	22
146	First-principles photoemission spectroscopy and orbital tomography in molecules from koopmans-compliant functionals. <i>Physical Review Letters</i> , 2015 , 114, 166405	7.4	33
145	Large-Area Epitaxial Monolayer MoS2. ACS Nano, 2015 , 9, 4611-20	16.7	583
144	Oxygen Evolution Reaction on La1\(\mathbb{B}\)srxCoO3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties. <i>Chemistry of Materials</i> , 2015 , 27, 7662-7672	9.6	200
143	Emergence of One-Dimensional Wires of Free Carriers in Transition-Metal-Dichalcogenide Nanostructures. <i>Nano Letters</i> , 2015 , 15, 6229-38	11.5	64
142	BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. <i>Computer Physics Communications</i> , 2014 , 185, 422-429	4.2	166
141	Piecewise linearity and spectroscopic properties from Koopmans-compliant functionals. <i>Topics in Current Chemistry</i> , 2014 , 347, 193-233		16
140	Thermal conductivity of graphene and graphite: collective excitations and mean free paths. <i>Nano Letters</i> , 2014 , 14, 6109-14	11.5	353
139	An Open-Source Multiscale Framework for the Simulation of Nanoscale Devices. <i>IEEE Transactions on Electron Devices</i> , 2014 , 61, 48-53	2.9	40
138	Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation. <i>Physical Review B</i> , 2014 , 90,	3.3	76
137	Bridging density-functional and many-body perturbation theory: Orbital-density dependence in electronic-structure functionals. <i>Physical Review B</i> , 2014 , 89,	3.3	26
136	Engineering polar discontinuities in honeycomb lattices. <i>Nature Communications</i> , 2014 , 5, 5157	17.4	37
135	Electron-phonon interactions and the intrinsic electrical resistivity of graphene. <i>Nano Letters</i> , 2014 , 14, 1113-9	11.5	109
134	An updated version of BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis. <i>Computer Physics Communications</i> , 2014 , 185, 2311-2312	4.2	8
133	Chemisorbed Molecules under Potential Bias: Detailed Insights from First-Principles Vibrational Spectroscopies. <i>Electrochimica Acta</i> , 2014 , 121, 210-214	6.7	21
132	Electrostatics of solvated systems in periodic boundary conditions. <i>Physical Review B</i> , 2014 , 90,	3.3	60

(2013-2014)

131	Spin-resolved optical conductivity of two-dimensional group-VIB transition-metal dichalcogenides. <i>Physical Review B</i> , 2014 , 90,	3.3	29
130	Koopmans-compliant functionals and their performance against reference molecular data. <i>Physical Review B</i> , 2014 , 90,	3.3	63
129	Static dielectric permittivity of ice from first principles. <i>Physical Review Letters</i> , 2014 , 113, 245501	7.4	7
128	An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. <i>Computer Physics Communications</i> , 2014 , 185, 2309-2310	4.2	949
127	First-Principles Determination of Phonon Lifetimes, Mean Free Paths, and Thermal Conductivities in Crystalline Materials: Pure Silicon and Germanium. <i>Topics in Applied Physics</i> , 2014 , 115-136	0.5	8
126	Covalently Functionalized Metallic Single-Walled Carbon Nanotubes Studied Using Electrostatic Force Microscopy and Dielectric Force Microscopy. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 24570-24.	578	8
125	Defect ordering and defectdomain-wall interactions in PbTiO3: A first-principles study. <i>Physical Review B</i> , 2013 , 88,	3.3	75
124	Conductance Switching and Many-Valued Logic in Porphyrin Assemblies. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3039-3044	6.4	24
123	Donor and acceptor levels of organic photovoltaic compounds from first principles. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 685-95	3.6	33
122	Self-assembled quantum dots in a nanowire system for quantum photonics. <i>Nature Materials</i> , 2013 , 12, 439-44	27	278
121	First-principles prediction of the equilibrium shape of nanoparticles under realistic electrochemical conditions. <i>Physical Review Letters</i> , 2013 , 110, 086104	7.4	50
120	Quantum states of muons in fluorides. <i>Physical Review B</i> , 2013 , 87,	3.3	37
119	First-principles quantum transport with electron-vibration interactions: A maximally localized Wannier functions approach. <i>Physical Review B</i> , 2013 , 87,	3.3	15
118	Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7985-91	16.4	240
117	A Natural Helical Crystal Lattice Model for Carbon Nanotubes. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 1865-71	6.4	3
116	Thermodynamic stability of alkali-metallinc double-cation borohydrides at low temperatures. <i>Physical Review B</i> , 2013 , 88,	3.3	27
115	Self-consistent continuum solvation (SCCS): the case of charged systems. <i>Journal of Chemical Physics</i> , 2013 , 139, 214110	3.9	73
114	Playing quantum hide-and-seek with the muon: localizing muon stopping sites. <i>Physica Scripta</i> , 2013 , 88, 068510	2.6	48

113	Diameter Effect on the Sidewall Functionalization of Single-Walled Carbon Nanotubes by Addition of Dichlorocarbene. <i>Advanced Functional Materials</i> , 2012 , 22, 5216-5223	15.6	12
112	Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. <i>Nano Letters</i> , 2012 , 12, 2673-8	11.5	154
111	Maximally localized Wannier functions: Theory and applications. <i>Reviews of Modern Physics</i> , 2012 , 84, 1419-1475	40.5	1475
110	The shear mode of multilayer graphene. <i>Nature Materials</i> , 2012 , 11, 294-300	27	482
109	Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene. <i>Physical Review B</i> , 2012 , 85,	3.3	31
108	Revised self-consistent continuum solvation in electronic-structure calculations. <i>Journal of Chemical Physics</i> , 2012 , 136, 064102	3.9	293
107	Electronic, vibrational, and transport properties of pnictogen-substituted ternary skutterudites. <i>Physical Review B</i> , 2012 , 85,	3.3	22
106	An integrated framework for multi-scale multi-physics numerical modelling of interface evolution in welding. <i>IOP Conference Series: Materials Science and Engineering</i> , 2012 , 33, 012029	0.4	4
105	Transport properties of room-temperature ionic liquids from classical molecular dynamics. <i>Journal of Chemical Physics</i> , 2012 , 137, 044508	3.9	32
104	Accurate potential energy surfaces with a DFT+U(R) approach. <i>Journal of Chemical Physics</i> , 2011 , 135, 194105	3.9	56
103	Improving the electrical conductivity of carbon nanotube networks: a first-principles study. <i>ACS Nano</i> , 2011 , 5, 9726-36	16.7	53
102	Berry phase and pseudospin winding number in bilayer graphene. <i>Physical Review B</i> , 2011 , 84,	3.3	64
101	Photoelectron properties of DNA and RNA bases from many-body perturbation theory. <i>Physical Review B</i> , 2011 , 84,	3.3	32
100	Switchable conductance in functionalized carbon nanotubes via reversible sidewall bond cleavage. <i>ACS Nano</i> , 2011 , 5, 4455-65	16.7	11
99	Accelerating GW calculations with optimal polarizability basis. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 527-536	1.3	14
98	Dominant phonon wavevectors of the 2D Raman mode of graphene. <i>Physica Status Solidi (B): Basic Research</i> , 2011 , 248, 2635-2638	1.3	8
97	Carbene-functionalized single-walled carbon nanotubes and their electrical properties. <i>Small</i> , 2011 , 7, 1257-63	11	20
96	Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. <i>Physical Review Letters</i> , 2011 , 106, 045901	7.4	332

(2009-2011)

95	Transition-metal dioxides: a case for the intersite term in Hubbard-model functionals. <i>Journal of Chemical Physics</i> , 2011 , 134, 094103	3.9	43
94	Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations. <i>Chemistry of Materials</i> , 2011 , 23, 2979-2986	9.6	271
93	High thermal conductivity in short-period superlattices. <i>Nano Letters</i> , 2011 , 11, 5135-41	11.5	75
92	Automated quantum conductance calculations using maximally-localised Wannier functions. <i>Computer Physics Communications</i> , 2011 , 182, 2174-2183	4.2	24
91	Accelerating GW Calculations with Optimal Polarizability Basis 2011, 61-78		
90	Systematic study of first-row transition-metal diatomic molecules: a self-consistent DFT+U approach. <i>Journal of Chemical Physics</i> , 2010 , 133, 114103	3.9	73
89	Spatially extended Kondo state in magnetic molecules induced by interfacial charge transfer. <i>Physical Review Letters</i> , 2010 , 105, 106601	7.4	77
88	Local effects in the X-ray absorption spectrum of salt water. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 9594-601	3.4	38
87	Effects of filling in CoSb3: Local structure, band gap, and phonons from first principles. <i>Physical Review B</i> , 2010 , 81,	3.3	60
86	Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10725-10729	3.8	206
85	Koopmans@ondition for density-functional theory. Physical Review B, 2010, 82,	3.3	176
84	Ab initio converse NMR approach for pseudopotentials. <i>Physical Review B</i> , 2010 , 81,	3.3	22
83	Ab Initio Electrochemical Properties of Electrode Surfaces 2010 , 415-431		14
82	Electronic Structure and Reactivity of Transition Metal Complexes 2010 , 433-455		3
81	Quantitative Description of Electron Transfer Reactions 2010 , 457-487		
80	Dynamics and thermodynamics of a novel phase of NaAlH4. <i>Physical Review Letters</i> , 2009 , 103, 185901	7.4	19
79	Electronic structure and transport properties of ternary skutterudite: CoX3/2Y3/2. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1166, 4		
78	Direct and Indirect Effects of Filling on Electronic Structure of Skutterudites. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1166, 7		1

77	NMR shifts for polycyclic aromatic hydrocarbons from first-principles. <i>International Journal of Quantum Chemistry</i> , 2009 , 109, 3336-3342	2.1	34
76	QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 395502	1.8	13251
75	Linear and nonlinear susceptibilities from diffusion quantum Monte Carlo: application to periodic hydrogen chains. <i>Journal of Chemical Physics</i> , 2009 , 131, 094104	3.9	10
74	First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14426-33	16.4	43
73	First-principles characterization of the structure and electronic structure of B and Rh-S chalcogenides. <i>Physical Review B</i> , 2009 , 80,	3.3	21
7 ²	A converse approach to the calculation of NMR shielding tensors. <i>Journal of Chemical Physics</i> , 2009 , 131, 101101	3.9	49
71	Spin channels in functionalized graphene nanoribbons. <i>Nano Letters</i> , 2009 , 9, 3425-9	11.5	91
70	Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. <i>Physical Review B</i> , 2009 , 80,	3.3	340
69	Sensing mechanisms for carbon nanotube based NH3 gas detection. <i>Nano Letters</i> , 2009 , 9, 1626-30	11.5	191
68	Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, GrBeisen parameters, and sample orientation. <i>Physical Review B</i> , 2009 , 79,	3.3	1422
67	Bulk aluminum at high pressure: A first-principles study. <i>Physical Review B</i> , 2008 , 77,	3.3	32
66	Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts. <i>Nano Letters</i> , 2008 , 8, 64-8	11.5	31
65	Global and local charge trapping in carbon nanotube field-effect transistors. <i>Nanotechnology</i> , 2008 , 19, 175203	3.4	7
64	The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9886-91	11.5	98
63	Cycloadditions to Control Bond Breaking in Naphthalenes, Fullerenes, and Carbon Nanotubes: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4480-4485	3.8	19
62	Electrostatics in periodic boundary conditions and real-space corrections. <i>Physical Review B</i> , 2008 , 77,	3.3	99
61	A self-consistent Hubbard U density-functional theory approach to the addition-elimination reactions of hydrocarbons on bare FeO+. <i>Journal of Chemical Physics</i> , 2008 , 129, 134314	3.9	61
60	Study of gaseous interactions in carbon nanotube field-effect transistors through selective Si(3)N(4) passivation. <i>Nanotechnology</i> , 2008 , 19, 465201	3.4	7

(2006-2008)

59	Lattice anharmonicity in low-dimensional carbon systems. <i>Physica Status Solidi (B): Basic Research</i> , 2008 , 245, 2149-2154	1.3	24
58	Theoretical study of the performance for short channel carbon nanotube transistors with asymmetric contacts. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2008 , 372, 6940	- <i>6</i> 943	3
57	Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2008 , 132, 191-195	8.5	38
56	wannier90: A tool for obtaining maximally-localised Wannier functions. <i>Computer Physics Communications</i> , 2008 , 178, 685-699	4.2	2088
55	Simulation of heme using DFT + U: a step toward accurate spin-state energetics. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 7384-91	3.4	122
54	SixC1NO2 alloys: A possible route to stabilize carbon-based silica-like solids?. <i>Solid State Communications</i> , 2007 , 144, 273-276	1.6	14
53	Phonon anharmonicities in graphite and graphene. <i>Physical Review Letters</i> , 2007 , 99, 176802	7.4	327
52	CarParrinello molecular dynamics in the DFT+U formalism: Structure and energetics of solvated ferrous and ferric ions. <i>Journal of Electroanalytical Chemistry</i> , 2007 , 607, 107-112	4.1	16
51	In-plane structure and ordering at liquid sodium surfaces and interfaces from ab initio molecular dynamics. <i>Journal of Chemical Physics</i> , 2007 , 127, 134703	3.9	9
50	Exponential localization of Wannier functions in insulators. <i>Physical Review Letters</i> , 2007 , 98, 046402	7.4	235
49	Proton dynamics in superprotonic CsHSO4. <i>Physical Review B</i> , 2007 , 76,	3.3	67
48	Hydrogen bonding and coordination in normal and supercritical water from x-ray inelastic scattering. <i>Physical Review B</i> , 2007 , 76,	3.3	42
47	Vibrational recognition of adsorption sites for CO on platinum and platinum-ruthenium surfaces. Journal of the American Chemical Society, 2007 , 129, 11045-52	16.4	36
46	Spin and orbital magnetic response in metals: Susceptibility and NMR shifts. <i>Physical Review B</i> , 2007 , 76,	3.3	47
45	Stacking of oligo- and polythiophene cations in solution: surface tension and dielectric saturation. Journal of Chemical Physics, 2006 , 124, 194902	3.9	10
44	Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. <i>Physical Review Letters</i> , 2006 , 97, 166401	7.4	25
43	Ab initio studies of layering behavior of liquid sodium surfaces and interfaces. <i>Journal of Chemical Physics</i> , 2006 , 124, 174702	3.9	15
42	Realistic quantitative descriptions of electron transfer reactions: diabatic free-energy surfaces from first-principles molecular dynamics. <i>Physical Review Letters</i> , 2006 , 97, 028303	7.4	53

41	Realistic Modeling of Nanostructures Using Density Functional Theory. MRS Bulletin, 2006, 31, 681-687	3.2	21
40	Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes. <i>Physical Review Letters</i> , 2006 , 97, 116801	7.4	108
39	Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. <i>Physical Review Letters</i> , 2006 , 97, 103001	7.4	421
38	A unified electrostatic and cavitation model for first-principles molecular dynamics in solution. <i>Journal of Chemical Physics</i> , 2006 , 124, 74103	3.9	101
37	Effect of counterions on the interactions of charged oligothiophenes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 24822-6	3.4	12
36	Layering at liquid metal surfaces: Friedel oscillations and confinement effects. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, L269-L275	1.8	9
35	Static dielectric properties of carbon nanotubes from first principles. <i>Physical Review Letters</i> , 2006 , 96, 166801	7.4	195
34	pi-Stacking in thiophene oligomers as the driving force for electroactive materials and devices. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3207-12	16.4	69
33	Electronic-enthalpy functional for finite systems under pressure. <i>Physical Review Letters</i> , 2005 , 94, 1455	5 9 14	40
32	Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 95, 076804	7.4	152
31	First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. <i>Physical Review B</i> , 2005 , 71,	3.3	823
30	Dielectric response of periodic systems from quantum Monte Carlo calculations. <i>Physical Review Letters</i> , 2005 , 95, 207602	7.4	22
29	Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics. <i>Journal of Chemical Physics</i> , 2005 , 122, 204510	3.9	177
28	Phonon Dispersions of a Single-Wall (8,0) Carbon Nanotube: Effects of the Rotational Acoustic Sum Rule and of Surface Attachment. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 858, 220		O
27	Estacking in Charged Thiophene Oligomers. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17791-17795	3.4	55
26	Mechanism of the Hydrogen/Platinum(111) Fuel Cell Journal of Physical Chemistry B, 2004 , 108, 19670	-1594680	9
25	Ab initiomolecular dynamics of metal surfaces. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, S2575-S2	5 9.6	17
24	Ab initio transport properties of nanostructures from maximally localized Wannier functions. <i>Physical Review B</i> , 2004 , 69,	3.3	220

23	Photoinduced oxidation of carbon nanotubes. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, 5915-592	211.8	87
22	The electroreduction of hydrogen on platinum(111) in acidic media. <i>Journal of Electroanalytical Chemistry</i> , 2002 , 537, 7-19	4.1	16
21	Maximally localized Wannier functions in antiferromagnetic MnO within the FLAPW formalism. <i>Physical Review B</i> , 2002 , 65,	3.3	29
20	A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP. <i>Biophysical Journal</i> , 2002 , 82, 660-75	2.9	33
19	Maximally localized Wannier functions for entangled energy bands. <i>Physical Review B</i> , 2001 , 65,	3.3	1174
18	Wannier functions characterization of floating bonds in a-Si. <i>Computational Materials Science</i> , 2001 , 20, 337-342	3.2	9
17	Ab initio determination of the dielectric response of GaAs, AlAs, C, and SrO in the weighted-density approximation. <i>Journal of Physics and Chemistry of Solids</i> , 2000 , 61, 321-325	3.9	8
16	Insight into gallium behavior in aluminum grain boundaries from calculation on ⊞11 (113) boundary. <i>Acta Materialia</i> , 2000 , 48, 3623-3632	8.4	44
15	Dielectric response of oxides in the weighted density approximation. <i>Physical Review B</i> , 2000 , 62, 1272	24-31377	29 ₅₅
14	Wannier-function description of the electronic polarization and infrared absorption of high-pressure hydrogen. <i>Physical Review B</i> , 2000 , 62, 15505-15520	3.3	17
13	Thermal Contraction and Disordering of the Al(110) Surface. <i>Physical Review Letters</i> , 1999 , 82, 3296-32	29 9 .4	700
12	Maximally-localized Wannier functions for disordered systems: Application to amorphous silicon. <i>Solid State Communications</i> , 1998 , 107, 7-11	1.6	320
11	First principles calculation of the energy and structure of two solid surface phases on Ir{100}. <i>Surface Science</i> , 1998 , 418, 529-535	1.8	34
10	Maximally-localized Wannier functions in perovskites: Cubic BaTiO3 1998,		6
9	Sliding Mechanisms in Aluminum Grain Boundaries. <i>Physical Review Letters</i> , 1997 , 79, 869-872	7.4	65
8	Maximally localized generalized Wannier functions for composite energy bands. <i>Physical Review B</i> , 1997 , 56, 12847-12865	3.3	2886
7	Ensemble Density-Functional Theory for Ab Initio Molecular Dynamics of Metals and Finite-Temperature Insulators. <i>Physical Review Letters</i> , 1997 , 79, 1337-1340	7.4	277
6	Ab Initio Investigation of Grain Boundary Sliding. <i>Materials Research Society Symposia Proceedings</i> , 1995 , 408, 283		

5	Structure and phase stability of GaxIn1-xP solid solutions from computational alchemy. <i>Physical Review Letters</i> , 1994 , 72, 4001-4004	7.4	56
4	A Mori-Tanaka Theory for Textured Short-Fiber Composites: Application. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 1992 , 114, 101-104	2.6	8
3	Textural and Micromorphological Effects on the Overall Elastic Response of Macroscopically Anisotropic Composites. <i>Journal of Applied Mechanics, Transactions ASME</i> , 1992 , 59, 269-275	2.7	45
2	Data Management Plans: the Importance of Data Management in the BIG-MAP Project[]**. Batteries and Supercaps,	5.6	6
1	Virtual Computational Chemistry Teaching Laboratories Hands-On at a Distance. <i>Journal of Chemical Education</i> ,	2.4	5