
Marta Conde-Sieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7067673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrient Sensing Systems in Fish: Impact on Food Intake Regulation and Energy Homeostasis. Frontiers in Neuroscience, 2016, 10, 603.	2.8	94
2	Effect of different glycaemic conditions on gene expression of neuropeptides involved in control of food intake in rainbow trout; interaction with stress. Journal of Experimental Biology, 2010, 213, 3858-3865.	1.7	74
3	Stress Effects on the Mechanisms Regulating Appetite in Teleost Fish. Frontiers in Endocrinology, 2018, 9, 631.	3.5	64
4	Central leptin treatment modulates brain glucosensing function and peripheral energy metabolism of rainbow trout. Peptides, 2010, 31, 1044-1054.	2.4	61
5	Daily Rhythmic Expression Patterns of <i>Clock1a</i> , <i>Bmal1</i> , and <i>Per1</i> Genes in Retina and Hypothalamus of the Rainbow Trout, <i>Oncorhynchus Mykiss</i> . Chronobiology International, 2011, 28, 381-389.	2.0	56
6	Stress alters food intake and glucosensing response in hypothalamus, hindbrain, liver, and Brockmann bodies of rainbow trout. Physiology and Behavior, 2010, 101, 483-493.	2.1	53
7	In vitro leptin treatment of rainbow trout hypothalamus and hindbrain affects glucosensing and gene expression of neuropeptides involved in food intake regulation. Peptides, 2011, 32, 232-240.	2.4	42
8	Oral administration of melatonin counteracts several of the effects of chronic stress in rainbow trout. Domestic Animal Endocrinology, 2014, 46, 26-36.	1.6	39
9	Neuroendocrine and Immune Responses Undertake Different Fates following Tryptophan or Methionine Dietary Treatment: Tales from a Teleost Model. Frontiers in Immunology, 2017, 8, 1226.	4.8	38
10	Potential capacity of Senegalese sole (Solea senegalensis) to use carbohydrates: Metabolic responses to hypo- and hyper-glycaemia. Aquaculture, 2015, 438, 59-67.	3.5	29
11	Stress inhibition of melatonin synthesis in the pineal organ of rainbow trout (<i>Oncorhynchus) Tj ETQq1 1 0.7</i>	84314 rgB 1.7	T /Qyerlock 1
12	ACTH-stimulated cortisol release from head kidney of rainbow trout is modulated by glucose concentration. Journal of Experimental Biology, 2013, 216, 554-67.	1.7	25
13	Hypothalamic fatty acid sensing in Senegalese sole (<i>Solea senegalensis</i>): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1521-R1531.	1.8	24
14	Feeding Stimulation Ability and Central Effects of Intraperitoneal Treatment of L-Leucine, L-Valine, and L-Proline on Amino Acid Sensing Systems in Rainbow Trout: Implication in Food Intake Control. Frontiers in Physiology, 2018, 9, 1209.	2.8	24
15	Influence of vegetable diets on physiological and immune responses to thermal stress in Senegalese sole (Solea senegalensis). PLoS ONE, 2018, 13, e0194353.	2.5	24
16	Melatonin partially minimizes the adverse stress effects in Senegalese sole (Solea senegalensis). Aquaculture, 2013, 388-391, 165-172.	3.5	23
17	Response of rainbow trout's (Oncorhynchus mykiss) hypothalamus to glucose and oleate assessed through transcription factors BSX, ChREBP, CREB, and FoxO1. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 893-904.	1.6	23
18	A simple melatonin treatment protocol attenuates the response to acute stress in the sole Solea senegalensis. Aquaculture, 2016, 452, 272-282.	3.5	22

Marta Conde-Sieira

#	Article	IF	CITATIONS
19	CRF treatment induces a readjustment in glucosensing capacity in the hypothalamus and hindbrain of rainbow trout. Journal of Experimental Biology, 2011, 214, 3887-3894.	1.7	19
20	Melatonin treatment alters glucosensing capacity and mRNA expression levels of peptides related to food intake control in rainbow trout hypothalamus. General and Comparative Endocrinology, 2012, 178, 131-138.	1.8	19
21	Dietary Fatty Acid Metabolism is Affected More by Lipid Level than Source in Senegalese Sole Juveniles: Interactions for Optimal Dietary Formulation. Lipids, 2016, 51, 105-122.	1.7	17
22	First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Scientific Reports, 2021, 11, 4933.	3.3	16
23	Short- and long-term metabolic responses to diets with different protein:carbohydrate ratios in Senegalese sole (Solea senegalensis, Kaup 1858). British Journal of Nutrition, 2016, 115, 1896-1910.	2.3	15
24	Is plasma cortisol response to stress in rainbow trout regulated by catecholamine-induced hyperglycemia?. General and Comparative Endocrinology, 2014, 205, 207-217.	1.8	14
25	The short-term presence of oleate or octanoate alters the phosphorylation status of Akt, AMPK, mTOR, CREB, and FoxO1 in liver of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2018, 219-220, 17-25.	1.6	11
26	Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 789-797.	1.6	10
27	Glucosensing capacity in liver of rainbow trout displays day-night variations possibly related to melatonin action. Journal of Experimental Biology, 2012, 215, 3112-9.	1.7	10
28	Short-term exposure to repeated chasing stress does not induce habituation in Senegalese sole, Solea senegalensis. Aquaculture, 2018, 487, 32-40.	3.5	9
29	Ceramide counteracts the effects of ghrelin on the metabolic control of food intake in rainbow trout. Journal of Experimental Biology, 2017, 220, 2563-2576.	1.7	8
30	Oral and pre-absorptive sensing of amino acids relates to hypothalamic control of food intake in rainbow trout. Journal of Experimental Biology, 2020, 223, .	1.7	8
31	Effects of CCK-8 and GLP-1 on fatty acid sensing and food intake regulation in trout. Journal of Molecular Endocrinology, 2019, 62, 101-116.	2.5	8
32	Differential Role of Hypothalamic AMPKα Isoforms in Fish: an Evolutive Perspective. Molecular Neurobiology, 2019, 56, 5051-5066.	4.0	7
33	Hypothalamic AMPKα2 regulates liver energy metabolism in rainbow trout through vagal innervation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R122-R134.	1.8	7
34	Central administration of endocannabinoids exerts bimodal effects in food intake of rainbow trout. Hormones and Behavior, 2021, 134, 105021.	2.1	7
35	Central regulation of food intake is not affected by inclusion of defatted Tenebrio molitor larvae meal in diets for European sea bass (Dicentrarchus labrax). Aquaculture, 2021, 544, 737088.	3.5	7
36	Growth performance and nutrient utilisation of Senegalese sole fed vegetable oils in plant protein-rich diets from juvenile to market size. Aquaculture, 2019, 511, 734229.	3.5	6

#	Article	IF	CITATIONS
37	The endocannabinoid system is affected by a high-fat-diet in rainbow trout. Hormones and Behavior, 2020, 125, 104825.	2.1	6

39	Na+/K+-ATPase is involved in the regulation of food intake in rainbow trout but apparently not through brain glucosensing mechanisms. Physiology and Behavior, 2019, 209, 112617.	2.1	5
40	Central Treatment of Ketone Body in Rainbow Trout Alters Liver Metabolism Without Apparently Altering the Regulation of Food Intake. Frontiers in Physiology, 2019, 10, 1206.	2.8	5
41	First evidence on the role of palmitoylethanolamide in energy homeostasis in fish. Hormones and Behavior, 2020, 117, 104609.	2.1	5
42	Role of the G protein-coupled receptors GPR84 and GPR119 in the central regulation of food intake in rainbow trout. Journal of Experimental Biology, 2021, 224, .	1.7	5
43	Periprandial response of central cannabinoid system to different feeding conditions in rainbow trout Oncorhynchus mykiss. Nutritional Neuroscience, 2020, , 1-12.	3.1	5
44	The long-chain fatty acid receptors FFA1 and FFA4 are involved in food intake regulation in fish brain. Journal of Experimental Biology, 2020, 223, .	1.7	4
45	REV-ERBα Agonist SR9009 Promotes a Negative Energy Balance in Goldfish. International Journal of Molecular Sciences, 2022, 23, 2921.	4.1	4
46	Partial and total fishmeal replacement by defatted Tenebrio molitor larvae meal do not alter short- and mid-term regulation of food intake in European sea bass (Dicentrarchus labrax). Aquaculture, 2022, 560, 738604.	3.5	4
47	The Opioid System in Rainbow Trout Telencephalon Is Probably Involved in the Hedonic Regulation of Food Intake. Frontiers in Physiology, 2022, 13, 800218.	2.8	2