
Javier MartÃ-nez-Abaigar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7067346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current and historical factors drive variation of reproductive traits in unisexual mosses in Europe: A case study. Journal of Systematics and Evolution, 2023, 61, 213-226.	1.6	3
2	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochemical and Photobiological Sciences, 2022, 21, 275-301.	1.6	40
3	Bryophyte ultraviolet-omics: from genes to the environment. Journal of Experimental Botany, 2022, 73, 4412-4426.	2.4	5
4	Unveiling the nature of a miniature world: a horizon scan of fundamental questions in bryology. Journal of Bryology, 2022, 44, 1-34.	0.4	12
5	Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical and Photobiological Sciences, 2021, 20, 1-67.	1.6	93
6	Novel biotechnological substances from bryophytes. , 2021, , 233-248.		5
7	Developmental Stage Determines the Accumulation Pattern of UV-Absorbing Compounds in the Model Liverwort Marchantia polymorpha subsp. ruderalis under Controlled Conditions. Plants, 2021, 10, 473.	1.6	4
8	Secondary metabolites and related genes in <scp><i>Vitis vinifera</i></scp> L. cv. Tempranillo grapes as influenced by ultraviolet radiation and berry development. Physiologia Plantarum, 2021, 173, 709-724.	2.6	20
9	To What Extent Are the Effects of UV Radiation on Grapes Conserved in the Resulting Wines?. Plants, 2021, 10, 1678.	1.6	4
10	Testing a novel biotechnological passive sampler for monitoring atmospheric PAH pollution. Journal of Hazardous Materials, 2020, 381, 120949.	6.5	17
11	Phenolic characteristics acquired by berry skins of <i>Vitis vinifera</i> cv. Tempranillo in response to closeâ€toâ€ambient solar ultraviolet radiation are mostly reflected in the resulting wines. Journal of the Science of Food and Agriculture, 2020, 100, 401-409.	1.7	22
12	A supplement of ultraviolet-B radiation under field conditions increases phenolic and volatile compounds of Tempranillo grape skins and the resulting wines. European Journal of Agronomy, 2020, 121, 126150.	1.9	14
13	Phenolic compounds from different bryophyte species and cell compartments respond specifically to ultraviolet radiation, but not particularly quickly. Plant Physiology and Biochemistry, 2019, 134, 137-144.	2.8	21
14	Acclimation of Bryophytes to Sun Conditions, in Comparison to Shade Conditions, Is Influenced by Both Photosynthetic and Ultraviolet Radiations. Frontiers in Plant Science, 2019, 10, 998.	1.7	9
15	Photosynthetically-active radiation, UV-A and UV-B, causes both common and specific damage and photoprotective responses in the model liverwort Marchantia polymorpha subsp. ruderalis. Photochemical and Photobiological Sciences, 2019, 18, 400-412.	1.6	10
16	A perspective on ecologically relevant plant-UV research and its practical application. Photochemical and Photobiological Sciences, 2019, 18, 970-988.	1.6	69
17	A field portable method for the semiâ€quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants. Physiologia Plantarum, 2019, 167, 540-555.	2.6	18
18	Cell compartmentation of ultravioletâ€ebsorbing compounds: An underexplored tool related to bryophyte ecology, phylogeny and evolution. Functional Ecology, 2018, 32, 882-893.	1.7	14

#	Article	IF	CITATIONS
19	Evolutionary conservation of structure and function of the <scp>UVR</scp> 8 photoreceptor from the liverwort <i>Marchantia polymorpha</i> and the moss <i>Physcomitrella patens</i> . New Phytologist, 2018, 217, 151-162.	3.5	51
20	Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?. Molecules, 2018, 23, 1741.	1.7	5
21	Spores potentially dispersed to longer distances are more tolerant to ultraviolet radiation: A case study in the moss genus <i>Orthotrichum</i> . American Journal of Botany, 2018, 105, 996-1008.	0.8	4
22	Ecophysiology of photosynthetic pigments in aquatic bryophytes. , 2018, , 277-292.		4
23	First Data on the Effects of Ultraviolet Radiation on Phenolic Compounds in the Model HornwortAnthoceros agrestis. Cryptogamie, Bryologie, 2018, 39, 201-211.	0.1	11
24	Effects of Climate Change on Aquatic Bryophytes. , 2018, , 268-287.		0
25	Modelling and mapping heavy metal and nitrogen concentrations in moss in 2010 throughout Europe by applying Random Forests models. Atmospheric Environment, 2017, 156, 146-159.	1.9	22
26	Environmental plasticity of Pinot noir grapevine leaves: A transâ€European study of morphological and biochemical changes along a 1,500â€km latitudinal climatic gradient. Plant, Cell and Environment, 2017, 40, 2790-2805.	2.8	34
27	Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiology and Biochemistry, 2016, 109, 374-386.	2.8	28
28	Environmental Factors Correlated with the Metabolite Profile of <i>Vitis vinifera</i> cv. Pinot Noir Berry Skins along a European Latitudinal Gradient. Journal of Agricultural and Food Chemistry, 2016, 64, 8722-8734.	2.4	52
29	Trace element concentrations in the moss Hypnum cupressiforme growing in a presumably unpolluted area. Chemosphere, 2016, 158, 177-183.	4.2	7
30	Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environmental Science and Pollution Research, 2016, 23, 10457-10476.	2.7	35
31	Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some "hotspots―remain in 2010. Environmental Pollution, 2015, 200, 93-104.	3.7	136
32	Spatial variability of ultraviolet-absorbing compounds in an aquatic liverwort and their usefulness as biomarkers of current and past UV radiation: A case study in the Atlantic–Mediterranean transition. Science of the Total Environment, 2015, 518-519, 248-257.	3.9	10
33	Ultraviolet-absorbing compounds from the cell walls of an aquatic liverwort are more efficiently extracted by alkaline than by enzymatic digestion. Journal of Bryology, 2015, 37, 8-14.	0.4	5
34	UV radiation biomonitoring using cell compartmentation of UV-absorbing compounds in herbarium samples of a liverwort. Ecological Indicators, 2015, 52, 48-56.	2.6	4
35	Effects of <scp>UV</scp> exclusion on the physiology and phenolic composition of leaves and berries of <i>Vitis vinifera</i> cv. Graciano. Journal of the Science of Food and Agriculture, 2015, 95, 409-416.	1.7	26
36	Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses. BMC Plant Biology, 2014, 14, 183.	1.6	132

#	Article	IF	CITATIONS
37	UVâ€B Induced Secondary Plant Metabolites. Optik & Photonik, 2014, 9, 34-37.	0.3	84
38	Among- and within-genus variability of the UV-absorption capacity in saxicolous mosses. Bryologist, 2014, 117, 1-9.	0.1	8
39	Cell Compartmentation of UV-Absorbing Compounds in Two Aquatic Mosses Under Enhanced UV-B. Cryptogamie, Bryologie, 2012, 33, 169-184.	0.1	14
40	Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort. Journal of Plant Physiology, 2012, 169, 20-26.	1.6	30
41	UV responses of <i>Lolium perenne</i> raised along a latitudinal gradient across Europe: a filtration study. Physiologia Plantarum, 2012, 145, 604-618.	2.6	17
42	Aquatic Bryophytes under Ultraviolet Radiation. , 2011, , 115-146.		10
43	Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability. Annals of Botany, 2011, 108, 557-565.	1.4	34
44	Effects of enhanced UV-B radiation on hydroxycinnamic acid derivatives extracted from different cell compartments in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Physiologia Plantarum, 2010, 140, no-no.	2.6	23
45	Cyclic environmental factors only partially explain the seasonal variability of photoprotection and physiology in two mosses from an unforested headwater stream. Bryologist, 2010, 113, 277-291.	0.1	14
46	Seasonal variations in UVâ€absorbing compounds and physiological characteristics in the aquatic liverwort <i>Jungermannia exsertifolia</i> subsp. <i>cordifolia</i> over a 3â€year period. Physiologia Plantarum, 2009, 136, 73-85.	2.6	21
47	Retrospective bioindication of stratospheric ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort. Environmental Pollution, 2009, 157, 2335-2344.	3.7	16
48	Hydroxycinnamic acid derivatives in an aquatic liverwort as possible bioindicators of enhanced UV radiation. Environmental Pollution, 2008, 151, 8-16.	3.7	28
49	Ultraviolet-absorbing capacity of aquatic bryophytes from Tierra del Fuego (Argentina). Journal of Bryology, 2008, 30, 290-296.	0.4	12
50	High-Level Phosphate Addition Does Not Modify UV Effects in Two Aquatic Bryophytes. Bryologist, 2008, 111, 444-454.	0.1	5
51	Physiological changes and UV protection in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia along an altitudinal gradient of UV-B radiation. Functional Plant Biology, 2006, 33, 1025.	1.1	31
52	Effects of cadmium and enhanced UV radiation on the physiology and the concentration of UV-absorbing compounds of the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia. Photochemical and Photobiological Sciences, 2006, 5, 760-769.	1.6	33
53	Ultraviolet Radiation-Induced Changes in Mycosporine-Like Amino Acids and Physiological Variables in the Red Alga <i>Lemanea fluviatilis</i> . Journal of Freshwater Ecology, 2005, 20, 677-687.	0.5	8
54	Interactions between parasitic fungi and mosses: pegged and swollen-tipped rhizoids inFunariaandBryum. Journal of Bryology, 2005, 27, 47-53.	0.4	24

#	Article	IF	CITATIONS
55	Assessing the UV-B Tolerance of Sun and Shade Samples of Two Aquatic Bryophytes Using Short-term Tests. Bryologist, 2005, 108, 435-448.	0.1	17
56	Influence of Temperature on the Effects of Artificially Enhanced UV-B Radiation on Aquatic Bryophytes Under Laboratory Conditions. Photosynthetica, 2004, 42, 201-212.	0.9	30
57	A Survey of the Distribution of UV-Absorbing Compounds in Aquatic Bryophytes from a Mountain Stream. Bryologist, 2004, 107, 202-208.	0.1	19
58	El modelo mixto (presencial-virtual) en la enseñanza de la BiologÃa para Ingenieros Técnicos AgrÃcolas. Un avance sobre las impresiones de los alumnos. Contextos Educativos: Revista De Educación, 2004, .	0.1	0
59	Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. Journal of Bryology, 2003, 25, 17-30.	0.4	44
60	Combined seasonal and longitudinal variations of element concentrations in two aquatic mosses (Fontinalis antipyretica and F. squamosa). Nova Hedwigia, 2002, 74, 349-364.	0.2	15
61	Short-Term Physiological Responses of the Aquatic Liverwort Jungermannia exsertifolia subsp. cordifolia to KH2PO4and Anoxia. Bryologist, 2002, 105, 86-95.	0.1	9
62	Biomonitoring of metal deposition in northern Spain by moss analysis. Science of the Total Environment, 2002, 300, 115-127.	3.9	67
63	The legend and procession of the Moss Men from Béjar (Salamanca, Spain). Journal of Bryology, 2001, 23, 264-266.	0.4	6
64	Element Concentrations and Enrichment Ratios in the Aquatic MossRhynchostegium riparioidesalong the River Iregua (La Rioja, Northern Spain). Bryologist, 2000, 103, 518-533.	0.1	20
65	Barbilophozia atlantica(Kaal.) K Müll. in the Iberian Peninsula. Journal of Bryology, 1998, 20, 510-513.	0.4	2
66	Adaptability of Leaves of Cistus ladanifer to Widely Varying Environmental Conditions. Functional Ecology, 1996, 10, 636.	1.7	48
67	A comparative study of Cistus ladanifer shrublands in Extremadura (CW Spain) on the basis of woody species composition and cover. Plant Ecology, 1995, 117, 123-132.	1.2	18
68	Seasonal changes in photosynthetic pigment composition of aquatic bryophytes. Journal of Bryology, 1994, 18, 97-113.	0.4	24
69	Effects of organic pollution on transplanted aquatic bryophytes. Journal of Bryology, 1993, 17, 553-566.	0.4	23