Xudong Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7067211/xudong-wang-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

153	15,739	59	125
papers	citations	h-index	g-index
159 ext. papers	17,855 ext. citations	12.9 avg, IF	7.02 L-index

#	Paper	IF	Citations
153	Direct-current nanogenerator driven by ultrasonic waves. <i>Science</i> , 2007 , 316, 102-5	33.3	1837
152	Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. <i>Nano Letters</i> , 2004 , 4, 423-6	11.5	1371
151	Microfibre-nanowire hybrid structure for energy scavenging. <i>Nature</i> , 2008 , 451, 809-13	50.4	1312
150	Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. <i>Nano Letters</i> , 2006 , 6, 2768-72	11.5	856
149	One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. <i>Chemical Reviews</i> , 2014 , 114, 9346-84	68.1	504
148	Controlled replication of butterfly wings for achieving tunable photonic properties. <i>Nano Letters</i> , 2006 , 6, 2325-31	11.5	442
147	Piezoelectric nanogeneratorsHarvesting ambient mechanical energy at the nanometer scale. <i>Nano Energy</i> , 2012 , 1, 13-24	17.1	334
146	H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. <i>Advanced Energy Materials</i> , 2018 , 8, 1800144	21.8	302
145	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800848	4.6	276
144	Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems. <i>Advanced Energy Materials</i> , 2014 , 4, 1301624	21.8	270
143	Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 8773-8777	3.4	268
142	PVDF microbelts for harvesting energy from respiration. <i>Energy and Environmental Science</i> , 2011 , 4, 45	08,5.4	259
141	High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates. <i>Advanced Functional Materials</i> , 2011 , 21, 4464-4469	15.6	259
140	Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 2007 , 17, 711		236
139	Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. <i>Nano Energy</i> , 2019 , 62, 275-281	17.1	234
138	Growth of uniformly aligned ZnO nanowire heterojunction arrays on GaN, AlN, and Al0.5Ga0.5N substrates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 7920-3	16.4	228
137	Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. <i>Nano Letters</i> , 2015 , 15, 7574-80	11.5	222

(2017-2011)

136	Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. <i>Nano Letters</i> , 2011 , 11, 3413-9	11.5	210
135	Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. <i>Nature Energy</i> , 2017 , 2,	62.3	186
134	Piezopotential-driven redox reactions at the surface of piezoelectric materials. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5962-6	16.4	178
133	Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. <i>Nano Energy</i> , 2014 , 9, 237-244	17.1	172
132	Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5866-72	16.4	151
131	Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring. <i>ACS Nano</i> , 2018 , 12, 6156-6162	16.7	148
130	Chemically Functionalized Natural Cellulose Materials for Effective Triboelectric Nanogenerator Development. <i>Advanced Functional Materials</i> , 2017 , 27, 1700794	15.6	147
129	Effective weight control via an implanted self-powered vagus nerve stimulation device. <i>Nature Communications</i> , 2018 , 9, 5349	17.4	142
128	Integrated nanogenerators in biofluid. <i>Nano Letters</i> , 2007 , 7, 2475-9	11.5	138
127	Effective Wound Healing Enabled by Discrete Alternative Electric Fields from Wearable Nanogenerators. <i>ACS Nano</i> , 2018 , 12, 12533-12540	16.7	137
126	Piezoelectric and Triboelectric Dual Effects in Mechanical-Energy Harvesting Using BaTiO/Polydimethylsiloxane Composite Film. <i>ACS Applied Materials & District Materials & Distr</i>	347	136
125	Cellulose-Based Nanomaterials for Energy Applications. <i>Small</i> , 2017 , 13, 1702240	11	130
124	High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD). <i>Organic Electronics</i> , 2007 , 8, 718-726	3.5	125
123	Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. <i>Nano Energy</i> , 2015 , 15, 227-234	17.1	124
122	Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. <i>Advanced Materials</i> , 2015 , 27, 4938-44	24	124
121	Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. <i>Nano Energy</i> , 2016 , 30, 103-108	17.1	121
120	Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 12239-45	9.5	116
119	Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO -SrTiO Core-Shell Nanowire Photoelectrochemical System. <i>Advanced Materials</i> , 2017 , 29, 1701432	24	115

118	Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. <i>ACS Nano</i> , 2015 , 9, 564-72	16.7	113
117	Density-controlled growth of aligned ZnO nanowires sharing a common contact: a simple, low-cost, and mask-free technique for large-scale applications. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7720-4	3.4	111
116	Air-Stable Porous FeN Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life. <i>Nano Letters</i> , 2017 , 17, 5740-5746	11.5	110
115	Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. <i>Nano Letters</i> , 2011 , 11, 5587-93	11.5	108
114	Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mechanics Letters, 2016 , 9, 514-530	3.9	107
113	Coupling of piezoelectric effect with electrochemical processes. <i>Nano Energy</i> , 2015 , 14, 296-311	17.1	107
112	Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. <i>Nano Energy</i> , 2016 , 27, 275-281	17.1	106
111	Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. <i>Nano Letters</i> , 2014 , 14, 2528-35	11.5	104
110	Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. <i>Scientific Reports</i> , 2013 , 3, 2160	4.9	101
109	Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. <i>Journal of Applied Physics</i> , 2010 , 108, 034309	2.5	101
108	Nanometre-thick single-crystalline nanosheets grown at the water-air interface. <i>Nature Communications</i> , 2016 , 7, 10444	17.4	100
107	Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO[photoanodes. <i>Advanced Materials</i> , 2014 , 26, 2262-7, 2110	24	90
106	Growth of Rutile Titanium Dioxide Nanowires by Pulsed Chemical Vapor Deposition. <i>Crystal Growth and Design</i> , 2011 , 11, 949-954	3.5	82
105	Piezoelectric-polarization-enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. <i>Advanced Materials</i> , 2013 , 25, 916-21	24	81
104	Band structure engineering at heterojunction interfaces via the piezotronic effect. <i>Advanced Materials</i> , 2012 , 24, 4683-91	24	80
103	Growth of titanium dioxide nanorods in 3D-confined spaces. <i>Nano Letters</i> , 2011 , 11, 624-31	11.5	77
102	Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes. <i>ACS Applied Materials & District Research</i> , 1288-93	9.5	69
101	Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. <i>Nano Energy</i> , 2014 , 6, 10-18	17.1	66

(2014-2005)

100	Self-attraction among aligned Au/ZnO nanorods under electron beam. <i>Applied Physics Letters</i> , 2005 , 86, 013111	3.4	66	
99	Surface-Plasmon-Resonance-Enhanced Photoelectrochemical Water Splitting from Au-Nanoparticle-Decorated 3D TiO2 Nanorod Architectures. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 12071-12079	3.8	63	
98	VS Nanoparticles Anchored on Graphene Sheets as a High-Rate and Stable Electrode Material for Sodium Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 735-742	8.3	63	
97	. IEEE Pervasive Computing, 2008 , 7, 49-55	1.3	62	
96	All-Textile Triboelectric Generator Compatible with Traditional Textile Process. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600147	6.8	59	
95	Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography. <i>Nano Letters</i> , 2005 , 5, 1784-8	11.5	59	
94	Hierarchical TiO2Bi nanowire architecture with photoelectrochemical activity under visible light illumination. <i>Energy and Environmental Science</i> , 2012 , 5, 7918	35.4	57	
93	Hybrid graphene@MoS2@TiO2 microspheres for use as a high performance negative electrode material for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3667-3674	13	56	
92	Mesoporous Piezoelectric Polymer Composite Films with Tunable Mechanical Modulus for Harvesting Energy from Liquid Pressure Fluctuation. <i>Advanced Functional Materials</i> , 2016 , 26, 6760-676	5 ^{15.6}	55	
91	Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH)2-Decorated ZnO Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 3410-6	6.4	52	
90	High-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric Nanofiber and Its Application for Biomedical Sensors. <i>Advanced Materials</i> , 2021 , 33, e2006093	24	52	
89	Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting. <i>APL Materials</i> , 2017 , 5,	5.7	51	
88	Self-Activated Electrical Stimulation for Effective Hair Regeneration a Wearable Omnidirectional Pulse Generator. <i>ACS Nano</i> , 2019 , 13, 12345-12356	16.7	51	
87	Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. <i>Nano Research</i> , 2020 , 13, 1903-1907	10	51	
86	Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities. <i>Science Advances</i> , 2017 , 3, e1602783	14.3	51	
85	Wafer-Level Patterned and Aligned Polymer Nanowire/Micro- and Nanotube Arrays on any Substrate. <i>Advanced Materials</i> , 2009 , 21, 2072-2076	24	50	
84	Ultrathin Piezotronic Transistors with 2 nm Channel Lengths. ACS Nano, 2018, 12, 4903-4908	16.7	46	
83	Mechanisms in the solution growth of free-standing two-dimensional inorganic nanomaterials. <i>Nanoscale</i> , 2014 , 6, 6398-414	7.7	46	

82	Study of Long-Term Biocompatibility and Bio-Safety of Implantable Nanogenerators. <i>Nano Energy</i> , 2018 , 51, 728-735	17.1	42
81	Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition. <i>Nano Letters</i> , 2013 , 13, 5727-34	11.5	41
80	Wedding Cake Growth Mechanism in One-Dimensional and Two-Dimensional Nanostructure Evolution. <i>Nano Letters</i> , 2015 , 15, 7766-72	11.5	36
79	Nitrogen Doped 3D Titanium Dioxide Nanorods Architecture with Significantly Enhanced Visible Light Photoactivity. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 4397-4405	3.8	36
78	Substrate-free self-assembly approach toward large-area nanomembranes. ACS Nano, 2012, 6, 2602-9	16.7	35
77	Piezotronic modulations in electro- and photochemical catalysis. MRS Bulletin, 2018, 43, 946-951	3.2	35
76	Degradable Piezoelectric Biomaterials for Wearable and Implantable Bioelectronics. <i>Current Opinion in Solid State and Materials Science</i> , 2020 , 24,	12	34
75	Wafer-scale heterostructured piezoelectric bio-organic thin films. <i>Science</i> , 2021 , 373, 337-342	33.3	33
74	Enhanced Performance of Ge Photodiodes via Monolithic Antireflection Texturing and EGe Self-Passivation by Inverse Metal-Assisted Chemical Etching. <i>ACS Nano</i> , 2018 , 12, 6748-6755	16.7	32
73	Two-dimensional nonlayered materials for electrocatalysis. <i>Energy and Environmental Science</i> , 2020 , 13, 3993-4016	35.4	31
72	Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. <i>Nano Energy</i> , 2019 , 57, 558-565	17.1	31
71	Implanted Battery-Free Direct-Current Micro-Power Supply from in Vivo Breath Energy Harvesting. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	31
70	Piezotronics in Photo-Electrochemistry. Advanced Materials, 2018, 30, e1800154	24	30
69	Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. <i>Nanotechnology</i> , 2014 , 25, 504005	3.4	30
68	Surface Gradient Ti-Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. <i>ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. <i>ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. <i>ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. <i>ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. <i>ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied Materials & Doped MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Long-Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate and Life Lithium Battery. ACS Applied MnO Nanowires for High-Rate </i></i></i></i></i>	9.5	29
67	Nature Degradable, Flexible, and Transparent Conductive Substrates from Green and Earth-Abundant Materials. <i>Scientific Reports</i> , 2017 , 7, 4936	4.9	28
66	Implementation of ferroelectric materials in photocatalytic and photoelectrochemical water splitting. <i>Nanoscale Horizons</i> , 2020 , 5, 1174-1187	10.8	26
65	A wafer-scale 1 nm Ni(OH) nanosheet with superior electrocatalytic activity for the oxygen evolution reaction. <i>Nanoscale</i> , 2018 , 10, 5054-5059	7.7	25

64	Metastable Intermediates in Amorphous Titanium Oxide: A Hidden Role Leading to Ultra-Stable Photoanode Protection. <i>Nano Letters</i> , 2018 , 18, 5335-5342	11.5	25
63	Output of an ultrasonic wave-driven nanogenerator in a confined tube. <i>Nano Research</i> , 2009 , 2, 177-182	10	24
62	Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. <i>Advanced Science</i> , 2021 , 8, 2004023	13.6	24
61	Nanoparticle-Decorated Ultrathin LaO Nanosheets as an Efficient Electrocatalysis for Oxygen Evolution Reactions. <i>Nano-Micro Letters</i> , 2020 , 12, 49	19.5	23
60	Three-Dimensional Kelvin Probe Microscopy for Characterizing In-Plane Piezoelectric Potential of Laterally Deflected ZnO Micro-/Nanowires. <i>Advanced Functional Materials</i> , 2012 , 22, 652-660	15.6	22
59	Multifunctional Artificial Artery from Direct 3D Printing with Built-In Ferroelectricity and Tissue-Matching Modulus for Real-Time Sensing and Occlusion Monitoring. <i>Advanced Functional Materials</i> , 2020 , 30, 2002868	15.6	22
58	Ionic Layer Epitaxy of Nanometer-Thick Palladium Nanosheets with Enhanced Electrocatalytic Properties. <i>Chemistry of Materials</i> , 2018 , 30, 3308-3314	9.6	21
57	Respiration-driven triboelectric nanogenerators for biomedical applications. <i>EcoMat</i> , 2020 , 2, e12045	9.4	21
56	Wafer-scale synthesis of ultrathin CoO nanosheets with enhanced electrochemical catalytic properties. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9060-9066	13	20
55	Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors. <i>Nanoscale</i> , 2016 , 8, 11595-601	7.7	20
54	Massive Vacancy Concentration Yields Strong Room-Temperature Ferromagnetism in Two-Dimensional ZnO. <i>Nano Letters</i> , 2019 , 19, 7085-7092	11.5	18
53	A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	18
52	Tailored TiO2 Protection Layer Enabled Efficient and Stable Microdome Structured p-GaAs Photoelectrochemical Cathodes. <i>Advanced Energy Materials</i> , 2020 , 10, 1902985	21.8	17
51	Hierarchical Branched Vanadium Oxide Nanorod@Si Nanowire Architecture for High Performance Supercapacitors. <i>Small</i> , 2017 , 13, 1603076	11	17
50	Evolution of titanium dioxide one-dimensional nanostructures from surface-reaction-limited pulsed chemical vapor deposition. <i>Journal of Materials Research</i> , 2013 , 28, 270-279	2.5	17
49	High-density platinum nanoparticle-decorated titanium dioxide nanofiber networks for efficient capillary photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11672-11679	13	17
48	Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns. <i>Scientific Reports</i> , 2016 , 6, 31407	4.9	16
47	Piezopotential-Driven Redox Reactions at the Surface of Piezoelectric Materials. <i>Angewandte Chemie</i> , 2012 , 124, 6064-6068	3.6	16

46	Piezoelectric Nanocellulose Thin Film with Large-Scale Vertical Crystal Alignment. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 26399-26404	9.5	15
45	Unit Cell Level Thickness Control of Single-Crystalline Zinc Oxide Nanosheets Enabled by Electrical Double-Layer Confinement. <i>Langmuir</i> , 2017 , 33, 7708-7714	4	15
44	Spontaneous phase transformation and exfoliation of rectangular single-crystal zinc hydroxy dodecylsulfate nanomembranes. <i>ACS Nano</i> , 2013 , 7, 6007-16	16.7	15
43	Energy Harvesting Floor from Commercial Cellulosic Materials for a Self-Powered Wireless Transmission Sensor System. <i>ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered Wireless (Note: ACS Applied Materials & Description of the Self-Powered </i>	9.5	14
42	Memristive Behavior Enabled by Amorphous-Crystalline 2D Oxide Heterostructure. <i>Advanced Materials</i> , 2020 , 32, e2000801	24	12
41	Kinetics-Driven Crystal Facets Evolution at the Tip of Nanowires: A New Implementation of the Ostwald-Lussac Law. <i>Nano Letters</i> , 2016 , 16, 7078-7084	11.5	12
40	Phase transformation, charge transfer, and ionic diffusion of Na4MnV(PO4)3 in sodium-ion batteries: a combined first-principles and experimental study. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17477-17486	13	11
39	Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti3C2Tx MXene Intermediate Layer. <i>Advanced Functional Materials</i> , 2021 , 31, 2010987	15.6	11
38	Nanogenerator for determination of acoustic power in ultrasonic reactors. <i>Ultrasonics Sonochemistry</i> , 2021 , 78, 105718	8.9	10
37	Self-powered liquid chemical sensors based on solid-liquid contact electrification. <i>Analyst, The</i> , 2021 , 146, 1656-1662	5	10
36	AlGaAs/Si dual-junction tandem solar cells by epitaxial lift-off and print-transfer-assisted direct bonding. <i>Energy Science and Engineering</i> , 2018 , 6, 47-55	3.4	9
35	Inverted Wedding Cake Growth Operated by the Ehrlich-Schwoebel Barrier in Two-Dimensional Nanocrystal Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2217-21	16.4	9
34	Influences of screw dislocations on electroluminescence of AlGaN/AlN-based UVC LEDs. <i>AIP Advances</i> , 2019 , 9, 085128	1.5	8
33	Decoupling the charge collecting and screening effects in piezotronics-regulated photoelectrochemical systems by using graphene as the charge collector. <i>Nano Energy</i> , 2018 , 48, 377-38	8 2 7.1	8
32	Bioinspired Synthesis of Quasi-Two-Dimensional Monocrystalline Oxides. <i>Chemistry of Materials</i> , 2019 , 31, 9040-9048	9.6	8
31	Prevention of Hepatic Ischemia-Reperfusion Injury by Carbohydrate-Derived Nanoantioxidants. <i>Nano Letters</i> , 2020 , 20, 6510-6519	11.5	8
30	Polymer-based Nanogenerator for Biomedical Applications. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 41-54	2.2	7
29	Computation of Electronic Energy Band Diagrams for Piezotronic Semiconductor and Electrochemical Systems. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700395	6.4	7

(2021-2016)

28	Morphological control in the adaptive ionic layer epitaxy of ZnO nanosheets. <i>Extreme Mechanics Letters</i> , 2016 , 7, 64-70	3.9	7
27	Spatial modeling for refining and predicting surface potential mapping with enhanced resolution. <i>Nanoscale</i> , 2013 , 5, 921-6	7.7	7
26	Mapping of strainpiezopotential relationship along bent zinc oxide microwires. <i>Nano Energy</i> , 2013 , 2, 1225-1231	17.1	7
25	Atomic layer deposition in the development of supercapacitor and lithium-ion battery devices. <i>Carbon</i> , 2021 , 179, 299-326	10.4	6
24	Materials Perspectives for Self-Powered Cardiac Implantable Electronic Devices toward Clinical Translation <i>Accounts of Materials Research</i> , 2021 , 2, 739-750	7.5	6
23	study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets. <i>Nano Research</i> , 2020 , 13, 3217-3223	10	5
22	Calculation of the piezoelectric and flexoelectric effects in nanowires using a decoupled finite element analysis method. <i>Journal of Applied Physics</i> , 2016 , 119, 154104	2.5	5
21	Quasi-Two-Dimensional Earth-Abundant Bimetallic Electrocatalysts for Oxygen Evolution Reactions. <i>ACS Energy Letters</i> , 2021 , 6, 3367-3375	20.1	5
20	Accelerated complete human skin architecture restoration after wounding by nanogenerator-driven electrostimulation. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 280	9.4	5
19	Atomic Layer Deposition for Advanced Electrode Design in Photoelectrochemical and Triboelectric Systems. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600835	4.6	4
18	Semiconductor Nanowires for Energy Harvesting. Semiconductors and Semimetals, 2016, 94, 297-368	0.6	4
17	Bioresorbable Primary Battery Anodes Built on Core-Double-Shell Zinc Microparticle Networks. <i>ACS Applied Materials & Double-Shell Zinc Microparticle Networks</i> . <i>ACS Applied Materials & Double-Shell Zinc Microparticle Networks</i> . <i>ACS Applied Materials & Double-Shell Zinc Microparticle Networks</i> .	9.5	4
16	A Rigid-Flexible Protecting Film with Surface Pits Structure for Dendrite-Free and High-Performance Lithium Metal Anode. <i>Nano Letters</i> , 2021 , 21, 7063-7069	11.5	4
15	Inverted Wedding Cake Growth Operated by the EhrlichBchwoebel Barrier in Two-Dimensional Nanocrystal Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 2257-2261	3.6	3
14	Enhanced Ferromagnetism from Organic-Cerium Oxide Hybrid Ultrathin Nanosheets. <i>ACS Applied Materials & Materials </i>	9.5	3
13	Photoelectrodes: Highly Efficient Capillary Photoelectrochemical Water Splitting Using Cellulose Nanofiber-Templated TiO2 Photoanodes (Adv. Mater. 14/2014). <i>Advanced Materials</i> , 2014 , 26, 2110-21	16 ⁴	3
12	Bulk Ferroelectric Metamaterial with Enhanced Piezoelectric and Biomimetic Mechanical Properties from Additive Manufacturing. <i>ACS Nano</i> , 2021 , 15, 14903-14914	16.7	3
11	Long-term in vivo operation of implanted cardiac nanogenerators in swine. <i>Nano Energy</i> , 2021 , 90, 1065	5077-:10	6507

10	Microwave TFTs Made of MOCVD ZnO With ALD Al2O3 Gate Dielectric. <i>IEEE Journal of the Electron Devices Society</i> , 2016 , 4, 55-59	2.3	2
9	Confined Shear Alignment of Ultrathin Films of Cellulose Nanocrystals <i>ACS Applied Bio Materials</i> , 2021 , 4, 7961-7966	4.1	2
8	Stretchable Encapsulation Materials with High Dynamic Water Resistivity and Tissue-Matching Elasticity ACS Applied Materials & Interfaces, 2022,	9.5	2
7	Piezoelectric and Piezotronic Effects in Energy Harvesting and Conversion 2013, 89-132		1
6	Mesoporous Ultrathin InO Nanosheet Cocatalysts on a Silicon Nanowire Photoanode for Efficient Photoelectrochemical Water Splitting. <i>ACS Applied Materials & Description of the Communication of the C</i>	9.5	1
5	Thickness-Dependent Piezoelectric Property from Quasi-Two-Dimensional Zinc Oxide Nanosheets with Unit Cell Resolution. <i>Research</i> , 2021 , 2021, 1519340	7.8	1
4	Mesoporous carbon nanofiber network derived from agarose for supercapacitor electrode. <i>Journal of Nanoparticle Research</i> , 2018 , 20, 1	2.3	1
3	The morphology of cast zinc-based alloy reinforced by spheroidal silicon phase and its wear resistance. <i>International Journal of Cast Metals Research</i> , 1998 , 11, 39-42	1	
2	Piezoelectric Nanogenerators for Mechanical Energy Harvesting. <i>International Symposium on Microelectronics</i> , 2011 , 2011, 000367-000375	0.2	
1	Level-expansion: A statistical sequential design methodology with application to nanomaterial synthesis. <i>Journal of Quality Technology</i> , 2020 , 52, 97-107	1.4	