
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7067120/publications.pdf Version: 2024-02-01

Δείρα Κάνινο

#	Article	IF	CITATIONS
1	The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Molecular Genetics and Genomics, 1989, 217, 185-194.	2.4	1,133
2	A short history of MADS-box genes in plants. Plant Molecular Biology, 2000, 42, 115-149.	2.0	617
3	The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications, 2017, 8, 1279.	5.8	240
4	Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Molecular Biology, 2003, 52, 831-841.	2.0	219
5	Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic Acids Research, 2005, 33, 6235-6250.	6.5	215
6	Evolution of Class B Floral Homeotic Proteins: Obligate Heterodimerization Originated from Homodimerization. Molecular Biology and Evolution, 2002, 19, 587-596.	3.5	167
7	A short history of MADS-box genes in plants. , 2000, , 115-149.		141
8	Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Science, 2005, 169, 553-558.	1.7	107
9	Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Molecular Biology, 2003, 51, 867-875.	2.0	91
10	Variations in chloroplast DNA from rice (Oryza sativa): differences between deletions mediated by short direct-repeat sequences within a single species. Theoretical and Applied Genetics, 1993, 86, 579-584.	1.8	83
11	The Novel Use of a Combination of Sonication and Vacuum Infiltration in Agrobacterium-mediated Transformation of Kidney Bean (Phaseolus vulgaris L.) with lea Gene. Molecular Breeding, 2005, 16, 189-197.	1.0	83
12	A transcription map of the chloroplast genome from rice (Oryza sativa). Current Genetics, 1993, 23, 166-174.	0.8	82
13	Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theoretical and Applied Genetics, 2012, 124, 345-354.	1.8	77
14	Two GLOBOSA-Like Genes are Expressed in Second and Third Whorls of Homochlamydeous Flowers in Asparagus officinalis L. Plant and Cell Physiology, 2004, 45, 325-332.	1.5	66
15	Class B Gene Expression and the Modified ABC Model in Nongrass Monocots. Scientific World Journal, The, 2007, 7, 268-279.	0.8	66
16	The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Molecular Biology, 2005, 58, 435-445.	2.0	65
17	Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus. Plant Cell Reports, 2005, 24, 494-500.	2.8	61
18	MYB transcription factor gene involved in sex determination in <i>Asparagus officinalis</i> . Genes To Cells, 2017, 22, 115-123.	0.5	59

#	Article	IF	CITATIONS
19	Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Science, 2007, 172, 319-326.	1.7	58
20	Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regulation, 2005, 45, 165-171.	1.8	57
21	Molecular phylogeny of the genus <i>Asparagus</i> (Asparagaceae) inferred from plastid <i>petB</i> intron and <i>petD–rpoA</i> intergenic spacer sequences. Plant Species Biology, 2005, 20, 121-132.	0.6	56
22	Intergeneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Reports, 1998, 17, 362-367.	2.8	48
23	Genetic control of flower development, color and senescence of Dendrobium orchids. Scientia Horticulturae, 2014, 175, 74-86.	1.7	47
24	Cool-Temperature-Induced Chlorosis in Rice Plants (I. Relationship between the Induction and a) Tj ETQq0 0 0 rgI	3T /Qverlo 2.3	ck 10 Tf 50 5
25	Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Development Genes and Evolution, 2006, 216, 301-313.	0.4	44
26	Asparagus. , 2011, , 23-42.		38
27	Genetic and physical maps and a clone bank of mitochondrial DNA from rice. Theoretical and Applied	1.8	37

27	Genetics, 1992, 84-84, 275-279.	1.8	37
28	Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theoretical and Applied Genetics, 1997, 94, 221-226.	1.8	37
29	Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Science, 2006, 170, 143-150.	1.7	35
30	Development of Sex-linked Primers in Garden Asparagus (Asparagus officinalis L.). Breeding Science, 2006, 56, 327-330.	0.9	35
31	Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. Journal of Plant Research, 2005, 118, 229-234.	1.2	33
32	Production and analysis of asymmetric hybrid plants between monocotyledon (Oryza sativa L.) and dicotyledon (Daucus carota L.). Theoretical and Applied Genetics, 1994, 89-89, 365-371.	1.8	32
33	Comparative de novo transcriptome profiles in Asparagus officinalis and A. kiusianus during the early stage of Phomopsis asparagi infection. Scientific Reports, 2017, 7, 2608.	1.6	28
34	Evolutionary variations in DNA sequences transferred from chloroplast genomes to mitochondrial genomes in the Gramineae. Current Genetics, 1994, 26, 512-518.	0.8	25
35	Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily, â€~Elodie'. Scientia Horticulturae, 2011, 128, 48-53.	1.7	24
36	Comparative studies of the structure of chloroplast DNA from four species of Oryza: cloning and physical maps. Theoretical and Applied Genetics, 1992, 83-83, 791-798.	1.8	21

#	Article	IF	CITATIONS
37	The Expression Patterns of Three Class B Genes in Two Distinctive Whorls of Petaloid Tepals in Alstroemeria ligtu. Plant and Cell Physiology, 2007, 48, 310-321.	1.5	21

Cool Temperature-Induced Chlorosis in Rice Plants (II. Effects of Cool Temperature on the Expression) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

39	Streptomycin mimics the cool temperature response in rice plants. Journal of Experimental Botany, 1998, 49, 221-227.	2.4	20
40	Title is missing!. Euphytica, 2003, 129, 319-323.	0.6	20
41	Suppression of B function strongly supports the modified ABCE model in Tricyrtis sp. (Liliaceae). Scientific Reports, 2016, 6, 24549.	1.6	20
42	Production and characterization of interspecific hybrids between Asparagus kiusianus Makino and A. officinalis L Euphytica, 2011, 182, 285.	0.6	19
43	Conversion of a male-specific RAPD marker into an STS marker in Asparagus officinalis L Euphytica, 2014, 197, 39-46.	0.6	19
44	AVAG2 is a putative D-class gene from an ornamental asparagus. Sexual Plant Reproduction, 2004, 17, 107.	2.2	18
45	The differentiation of sepal and petal morphologies in Commelinaceae. Gene, 2004, 343, 253-262.	1.0	17
46	Comparative Metabolome and Transcriptome Analyses of Susceptible Asparagus officinalis and Resistant Wild A. kiusianus Reveal Insights into Stem Blight Disease Resistance. Plant and Cell Physiology, 2020, 61, 1464-1476.	1.5	17
47	Laser Plasma Jet Driven Microparticles for DNA/Drug Delivery. PLoS ONE, 2012, 7, e50823.	1.1	17
48	Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes. BMC Plant Biology, 2005, 5, 6.	1.6	16
49	Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Reports, 2012, 31, 621-628.	2.8	16
50	Palindromic repeated sequences (PRSs) in the mitochondrial genome of rice: evidence for their insertion after divergence of the genus Oryza from the other Gramineae. Plant Molecular Biology, 1994, 24, 273-281.	2.0	15
51	Double flower formation in Tricyrtis macranthopsis is related to low expression of AGAMOUS ortholog gene. Scientia Horticulturae, 2015, 193, 337-345.	1.7	15
52	The Greenish Flower Phenotype of Habenaria radiata (Orchidaceae) Is Caused by a Mutation in the SEPALLATA-Like MADS-Box Gene HrSEP-1. Frontiers in Plant Science, 2018, 9, 831.	1.7	15
53	Physical and genetic analyses of Incl2 plasmid R721: Evidence for the presence of shufflon. Plasmid, 1990, 23, 248-251.	0.4	14
54	Maintenance of chloroplast-derived sequences in the mitochondrial DNA of Gramineae. Current Genetics, 1997, 32, 413-419.	0.8	14

#	Article	IF	CITATIONS
55	The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus. Sexual Plant Reproduction, 2004, 17, 1-8.	2.2	14
56	Production and analysis of reciprocal hybrids between Asparagus officinalis L. and A. schoberioides Kunth. Genetic Resources and Crop Evolution, 2007, 54, 1063-1071.	0.8	14
57	Characterization of CYCLOIDEA-like genes in controlling floral zygomorphy in the monocotyledon Alstroemeria. Scientia Horticulturae, 2014, 169, 6-13.	1.7	13
58	Molecular Mechanism Regulating Floral Architecture in Monocotyledonous Ornamental Plants. Horticulture Journal, 2016, 85, 8-22.	0.3	13
59	Role of Floral Homeotic Genes in the Morphology of Forchlorfenuron-induced Paracorollas in Torenia fournieri Lind Japanese Society for Horticultural Science, 2012, 81, 204-212.	0.8	13
60	Shock Wave Based Biolistic Device for DNA and Drug Delivery. Japanese Journal of Applied Physics, 2008, 47, 1522-1526.	0.8	12
61	Comparative analysis of floral MADS-box genes between wild-type and a putative homeotic mutant in lily. Journal of Horticultural Science and Biotechnology, 2008, 83, 453-461.	0.9	12
62	Morphological Variation and <i>AGAMOUS</i> -like Gene Expression in Double Flowers of <i>Cyclamen persicum</i> Mill Horticulture Journal, 2015, 84, 140-147.	0.3	11
63	The physical map of the chloroplast DNA from Asparagus officinalis L Theoretical and Applied Genetics, 1996, 92, 10-14.	1.8	10
64	The structure of the chloroplast genome in members of the genus Asparagus. Theoretical and Applied Genetics, 1997, 95, 1196-1202.	1.8	10
65	The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae). Sexual Plant Reproduction, 2006, 19, 133-144.	2.2	10
66	The expression of two DEFICIENS-like genes was reduced in the sepaloid tepals of viridiflora tulips. Breeding Science, 2010, 60, 110-120.	0.9	10
67	A chloroplast derived trnH gene is expressed in the mitochondrial genome of gramineous plants. Plant Molecular Biology, 1997, 34, 353-356.	2.0	9
68	Concentration of radiocesium in rice, vegetables, and fruits cultivated in the evacuation area in Okuma Town, Fukushima. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 1533-1537.	0.7	9
69	Class B Gene Expression and the Modified ABC Model in Nongrass Monocots. TSW Development & Embryology, 2007, 2, 17-28.	0.2	9
70	Phylogenetic Relationships in the Genus Asparagus Based on the Restriction Enzyme Analysis of the Chloroplast DNA Breeding Science, 1997, 47, 375-378.	0.2	8
71	Genomic organization of the AODEF gene in Asparagus officinalis L Genes and Genetic Systems, 2005, 80, 95-103.	0.2	8
72	Transformation of Soybean by Infecting Embryonic Calli with Agrobacterium tumefaciens and That of Soybean and Kidney Bean by Injecting the Bacteria into Germinating Seeds Plant Biotechnology, 2000, 17, 187-194.	0.5	6

#	Article	IF	CITATIONS
73	Expression analysis of an APETALA1/FRUITFULL-like gene in Phalaenopsis sp. â€~Hatsuyuki' (Orchidaceae). Horticulture Environment and Biotechnology, 2011, 52, 183-195.	0.7	6
74	Homologous recombination mediated by two palindromic repeated sequences in the mitochondrial genome of Oryza. Theoretical and Applied Genetics, 1995, 91, 1-8.	1.8	5
75	A 5-methyltryptophan resistant mutant of rice has an altered regulation of anthranilate synthase gene expression. Plant Science, 2003, 164, 1037-1045.	1.7	5
76	Features in Stem Blight Resistance Confirmed in Interspecific Hybrids of <i>Asparagus officinalis</i> L. and <i>Asparagus kiusianus</i> Makino. Horticulture Journal, 2018, 87, 200-205.	0.3	5
77	A new DNA marker for sex identification in purple asparagus. Euphytica, 2018, 214, 1.	0.6	5
78	The nucleotide sequence and expression of the gene for the 32-kDa quinone-binding protein from rice (Oryza sativa L). Plant Science, 1989, 59, 95-99.	1.7	4
79	Production of intraspecific hybrids between wild-type and petaloid-sepal cultivars in Habenaria radiata. Scientia Horticulturae, 2010, 124, 415-418.	1.7	4
80	Reduced transcription of a LEAFY-like gene in Alstroemeria sp. cultivar Green Coral that cannot develop floral meristems. Plant Science, 2012, 185-186, 298-308.	1.7	4
81	Analysis of the floral MADS-box genes from monocotyledonous Trilliaceae species indicates the involvement of SEPALLATA3 -like genes in sepal-petal differentiation. Plant Science, 2015, 241, 266-276.	1.7	4
82	A method for sex identification in asparagus using DNA from seeds. Euphytica, 2017, 213, 1.	0.6	4
83	Differential gene expression analysis and SNP/InDel marker discovery in resistant wild Asparagus kiusianus and susceptible A. officinalis in response to Phomopsis asparagi infection. Data in Brief, 2018, 21, 2117-2121.	0.5	4
84	Molecular mechanism underlying pseudopeloria in <i>Habenaria radiata</i> (Orchidaceae). Plant Journal, 2019, 99, 439-451.	2.8	4
85	Flower form alteration by genetic transformation with the class B MADS-box genes of Agapanthus praecox spp. orientalis in transgenic dicot and monocot plants. Molecular Breeding, 2007, 20, 425-429.	1.0	3
86	Expression and Functional Analyses of Five B-class Genes in the Grape Hyacinth (<i>Muscari) Tj ETQq0 0 0 r</i>	gBT /Over	lock 10 Tf 50
87	Analysis of Genetic Distance among Nine Medicago Species by Using DNA Polymorphisms Breeding Science, 1996, 46, 7-10.	0.2	2
88	Editorial: From Functional Genomics to Biotechnology in Ornamental Plants. Frontiers in Plant Science, 2019, 10, 463.	1.7	2
89	Streptomycin mimics the cool temperature response in rice plants. , 0, .		2

⁹⁰Chromosome-scale haplotype-phased genome assemblies of the male and female lines of wild asparagus
(<i>Asparagus kiusianus</i></ti>1.52

#	Article	IF	CITATIONS
91	Development of a new codominant CAPS marker for sex genotype identification in asparagus. Euphytica, 2022, 218, .	0.6	2
92	Detailed mapping of the chloroplast genome of barley, Hordeum vulgare L Genes and Genetic Systems, 1996, 71, 175-180.	0.2	1
93	Four DEF-like and two AGL6-like MADS-box genes display possible roles in perianth formation in Rhynchostylis retusa. Horticulture Environment and Biotechnology, 2021, 62, 805-815.	0.7	0