Stacy McGaugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066944/publications.pdf Version: 2024-02-01

		19657	21540
169	13,477	61	114
papers	citations	h-index	g-index
172	172	172	4774
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Reviews in Relativity, 2012, 15, 10.	26.7	645
2	Modified Newtonian Dynamics as an Alternative to Dark Matter. Annual Review of Astronomy and Astrophysics, 2002, 40, 263-317.	24.3	597
3	The Baryonic Tully-Fisher Relation. Astrophysical Journal, 2000, 533, L99-L102.	4.5	585
4	H II region abundances - Model oxygen line ratios. Astrophysical Journal, 1991, 380, 140.	4.5	561
5	SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES. Astronomical Journal, 2016, 152, 157.	4.7	446
6	Mass Density Profiles of Low Surface Brightness Galaxies. Astrophysical Journal, 2001, 552, L23-L26.	4.5	435
7	Radial Acceleration Relation in Rotationally Supported Galaxies. Physical Review Letters, 2016, 117, 201101.	7.8	411
8	The Baryonic Tullyâ€Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies. Astrophysical Journal, 2005, 632, 859-871.	4.5	406
9	THE BARYONIC TULLY–FISHER RELATION OF GAS-RICH GALAXIES AS A TEST OF Î→CDM AND MOND. Astronomical Journal, 2012, 143, 40.	4.7	348
10	High-Resolution Rotation Curves of Low Surface Brightness Galaxies. II. Mass Models. Astronomical Journal, 2001, 122, 2396-2427.	4.7	344
11	The dark and visible matter content of low surface brightness disc galaxies. Monthly Notices of the Royal Astronomical Society, 1997, 290, 533-552.	4.4	341
12	One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophysical Journal, 2017, 836, 152.	4.5	279
13	Mass Models for Low Surface Brightness Galaxies with Highâ€Resolution Optical Velocity Fields. Astrophysical Journal, 2008, 676, 920-943.	4.5	260
14	H I observations of low surface brightness galaxies: probing low-density galaxies. Monthly Notices of the Royal Astronomical Society, 1996, 283, 18-54.	4.4	251
15	Testing the Dark Matter Hypothesis with Low Surface Brightness Galaxies and Other Evidence. Astrophysical Journal, 1998, 499, 41-65.	4.5	250
16	THE BARYON CONTENT OF COSMIC STRUCTURES. Astrophysical Journal Letters, 2010, 708, L14-L17.	8.3	203
17	COLOR-MASS-TO-LIGHT-RATIO RELATIONS FOR DISK GALAXIES. Astronomical Journal, 2014, 148, 77.	4.7	192
18	Simulating observations of dark matter dominated galaxies: towards the optimal halo profile. Monthly Notices of the Royal Astronomical Society, 2003, 340, 657-678.	4.4	190

#	Article	IF	CITATIONS
19	Star formation thresholds in Low Surface Brightness galaxies. Astronomical Journal, 1993, 106, 548.	4.7	189
20	Oxygen abundances in low surface brightness disk galaxies. Astrophysical Journal, 1994, 426, 135.	4.5	181
21	The Mass Discrepancy–Acceleration Relation: Disk Mass and the Dark Matter Distribution. Astrophysical Journal, 2004, 609, 652-666.	4.5	176
22	THE SMALL SCATTER OF THE BARYONIC TULLY–FISHER RELATION. Astrophysical Journal Letters, 2016, 816, L14.	8.3	175
23	Gas Mass Fractions and the Evolution of Spiral Galaxies. Astrophysical Journal, 1997, 481, 689-702.	4.5	168
24	High-Resolution Rotation Curves of Low Surface Brightness Galaxies. I. Data. Astronomical Journal, 2001, 122, 2381-2395.	4.7	164
25	Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed. Publications of the Astronomical Society of the Pacific, 1997, 109, 745.	3.1	155
26	Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence. Astrophysical Journal, 1998, 499, 66-81.	4.5	150
27	The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution. Monthly Notices of the Royal Astronomical Society, 1995, 273, L35-L38.	4.4	146
28	Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies. Physical Review Letters, 2011, 106, 121303.	7.8	137
29	A catalog of low surface brightness galaxies - List II. Astronomical Journal, 1992, 103, 1107.	4.7	135
30	The Compression of Dark Matter Halos by Baryonic Infall. Astrophysical Journal, 2005, 634, 70-76.	4.5	127
31	Highâ€Resolution Optical Velocity Fields of 11 Low Surface Brightness Galaxies. Astrophysical Journal, Supplement Series, 2006, 165, 461-479.	7.7	127
32	Structural characteristics and stellar composition of low surface brightness disk galaxies. Astronomical Journal, 1994, 107, 530.	4.7	126
33	Fitting the radial acceleration relation to individual SPARC galaxies. Astronomy and Astrophysics, 2018, 615, A3.	5.1	124
34	Testing Modified Newtonian Dynamics with Low Surface Brightness Galaxies: Rotation Curve Fits. Astrophysical Journal, 1998, 508, 132-140.	4.5	122
35	WEIGHING GALAXY DISKS WITH THE BARYONIC TULLY–FISHER RELATION. Astrophysical Journal, 2015, 802, 18.	4.5	116
36	The number, luminosity and mass density of spiral galaxies as a function of surface brightness. Monthly Notices of the Royal Astronomical Society, 1996, 280, 337-354.	4.4	114

#	Article	IF	CITATIONS
37	A FIRST ATTEMPT TO CALIBRATE THE BARYONIC TULLY-FISHER RELATION WITH GAS-DOMINATED GALAXIES. Astronomical Journal, 2009, 138, 392-401.	4.7	109
38	LOCAL GROUP DWARF SPHEROIDALS: CORRELATED DEVIATIONS FROM THE BARYONIC TULLY-FISHER RELATION. Astrophysical Journal, 2010, 722, 248-261.	4.5	108
39	Milky Way Mass Models and MOND. Astrophysical Journal, 2008, 683, 137-148.	4.5	107
40	The baryonic Tully–Fisher relation for different velocity definitions and implications for galaxy angular momentum. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3267-3278.	4.4	106
41	A tale of two paradigms: the mutual incommensurability of Ĵ›CDM and MOND. Canadian Journal of Physics, 2015, 93, 250-259.	1.1	102
42	The Morphology of Low Surface Brightness Disk Galaxies. Astronomical Journal, 1995, 109, 2019.	4.7	100
43	Dynamical Stability and Environmental Influences in Low Surface Brightness Disk Galaxies. Astrophysical Journal, 1997, 477, L79-L83.	4.5	94
44	ANDROMEDA DWARFS IN LIGHT OF MOND. II. TESTING PRIOR PREDICTIONS. Astrophysical Journal, 2013, 775, 139.	4.5	88
45	Galaxy Selection and the Surface Brightness Distribution. Astronomical Journal, 1995, 110, 573.	4.7	88
46	Gas Mass Fractions and the Evolution of Low Surface Brightness Dwarf Galaxies. Astronomical Journal, 2001, 121, 2420-2430.	4.7	84
47	Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies. Astrophysical Journal, 2020, 904, 51.	4.5	82
48	The Rotation Velocity Attributable to Dark Matter at Intermediate Radii in Disk Galaxies. Astrophysical Journal, 2007, 659, 149-161.	4.5	81
49	THE RELATION BETWEEN STELLAR AND DYNAMICAL SURFACE DENSITIES IN THE CENTRAL REGIONS OF DISK GALAXIES. Astrophysical Journal Letters, 2016, 827, L19.	8.3	81
50	Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with Ĵ›CDM scaling relations. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1648-1668.	4.4	81
51	ANDROMEDA DWARFS IN LIGHT OF MODIFIED NEWTONIAN DYNAMICS. Astrophysical Journal, 2013, 766, 22.	4.5	79
52	The baryonic Tully-Fisher relation and its implication for dark matter halos. Astronomy and Astrophysics, 2009, 505, 577-587.	5.1	78
53	Does Low Surface Brightness Mean Low Density?. Astrophysical Journal, 1996, 469, L89-L92.	4.5	77
54	TESTING MODIFIED NEWTONIAN DYNAMICS WITH ROTATION CURVES OF DWARF AND LOW SURFACE BRIGHTNESS GALAXIES. Astrophysical Journal, 2010, 718, 380-391.	4.5	76

#	Article	IF	CITATIONS
55	A Comprehensive Catalog of Dark Matter Halo Models for SPARC Galaxies. Astrophysical Journal, Supplement Series, 2020, 247, 31.	7.7	75
56	The small scale environment of low surface brightness disk galaxies. Astronomical Journal, 1993, 106, 530.	4.7	74
57	Spatial distribution of low-surface-brightness galaxies. Monthly Notices of the Royal Astronomical Society, 1994, 267, 129-140.	4.4	72
58	Gas dynamics in tidal dwarf galaxies: Disc formation at <i>z</i> = 0. Astronomy and Astrophysics, 2015, 584, A113.	5.1	71
59	The new Milky Way satellites: alignment with the VPOS and predictions for proper motions and velocity dispersions. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1047-1061.	4.4	68
60	Using the Baryonic Tully–Fisher Relation to Measure H _o . Astronomical Journal, 2020, 160, 71.	4.7	63
61	The AGN and gas disc in the low surface brightness galaxy PGC 045080. Monthly Notices of the Royal Astronomical Society, 2007, 379, 11-20.	4.4	62
62	Oxygen abundances and chemical evolution in low surface brightness galaxies. Monthly Notices of the Royal Astronomical Society, 2004, 355, 887-898.	4.4	61
63	Balance of Dark and Luminous Mass in Rotating Galaxies. Physical Review Letters, 2005, 95, 171302.	7.8	61
64	CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS. Astrophysical Journal, 2009, 692, 1321-1332.	4.5	57
65	A Limit on the Cosmological Mass Density and Power Spectrum from the Rotation Curves of Low Surface Brightness Galaxies. Astrophysical Journal, 2003, 584, 566-576.	4.5	56
66	Discrete clouds of neutral gas between the galaxies M31 and M33. Nature, 2013, 497, 224-226.	27.8	55
67	The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies. Astrophysical Journal, 2017, 851, 22.	4.5	51
68	A possible local counterpart to the excess population of faint blue galaxies. Nature, 1994, 367, 538-541.	27.8	49
69	The collision velocity of the bullet cluster in conventional and modified dynamics. Monthly Notices of the Royal Astronomical Society, 0, 383, 417-423.	4.4	48
70	Stellar Populations and the Star Formation Histories of LSB Galaxies: III. Stellar Population Models. Publications of the Astronomical Society of Australia, 2014, 31, .	3.4	48
71	Perseus I and the NGC 3109 association in the context of the Local Group dwarf galaxy structures. Monthly Notices of the Royal Astronomical Society, 2014, 440, 908-919.	4.4	47
72	COMPARING THE DARK MATTER HALOS OF SPIRAL, LOW SURFACE BRIGHTNESS, AND DWARF SPHEROIDAL GALAXIES. Astrophysical Journal Letters, 2010, 717, L87-L91.	8.3	46

#	Article	IF	CITATIONS
73	MOND and the dynamics of NGC 1052â^'DF2. Monthly Notices of the Royal Astronomical Society, 2018, 480, 473-476.	4.4	46
74	Predictions and Outcomes for the Dynamics of Rotating Galaxies. Galaxies, 2020, 8, 35.	3.0	46
75	Boomerang Data Suggest a Purely Baryonic Universe. Astrophysical Journal, 2000, 541, L33-L36.	4.5	45
76	CO Detection and Millimeter Continuum Emission from Low Surface Brightness Galaxies. Astrophysical Journal, 2006, 651, 853-860.	4.5	44
77	Distinguishing between Cold Dark Matter and Modified Newtonian Dynamics: Predictions for the Microwave Background. Astrophysical Journal, 1999, 523, L99-L102.	4.5	43
78	Confrontation of Modified Newtonian Dynamics Predictions withWilkinson Microwave Anisotropy ProbeFirst Year Data. Astrophysical Journal, 2004, 611, 26-39.	4.5	43
79	MOND PREDICTION FOR THE VELOCITY DISPERSION OF THE "FEEBLE GIANT―CRATER II. Astrophysical Journal Letters, 2016, 832, L8.	8.3	43
80	The Third Law of Galactic Rotation. Galaxies, 2014, 2, 601-622.	3.0	41
81	THE SURFACE DENSITY PROFILE OF THE GALACTIC DISK FROM THE TERMINAL VELOCITY CURVE. Astrophysical Journal, 2016, 816, 42.	4.5	41
82	The Contribution of Low Surface Brightness Galaxies to Faint Galaxy Counts. Astrophysical Journal, 1995, 440, 470.	4.5	41
83	The Baryonic Tully–Fisher Relation. Publications of the Astronomical Society of Australia, 2004, 21, 412-414.	3.4	37
84	A QUMOND galactic N-body code - I. Poisson solver and rotation curve fitting. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2598-2609.	4.4	37
85	CO-ORBITING PLANES OF SUB-HALOS ARE SIMILARLY UNLIKELY AROUND PAIRED AND ISOLATED HOSTS. Astrophysical Journal Letters, 2014, 789, L24.	8.3	34
86	The geometry, composition, and mass of the Crab Nebula. Astrophysical Journal, 1989, 342, 364.	4.5	32
87	The Molecular ISM in Low Surface Brightness Disk Galaxies. Astrophysical Journal, 1999, 515, 89-96.	4.5	32
88	Testing Verlinde's emergent gravity with the radial acceleration relation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L68-L71.	3.3	29
89	The Mass-to-light Ratios and the Star Formation Histories of Disk Galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	29
90	Testing the Strong Equivalence Principle. II. Relating the External Field Effect in Galaxy Rotation Curves to the Large-scale Structure of the Universe. Astrophysical Journal, 2021, 921, 104.	4.5	29

#	Article	IF	CITATIONS
91	Stellar Populations and the Star Formation Histories of LSB Galaxies—Part I: Optical and H î± Imaging. Advances in Astronomy, 2011, 2011, 1-18.	1.1	28
92	Presence of a fundamental acceleration scale in galaxies. Nature Astronomy, 2018, 2, 924-924.	10.1	28
93	A constant characteristic volume density of dark matter haloes from SPARC rotation curve fits. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5106-5124.	4.4	28
94	Cosmological constant. Nature, 1996, 381, 483-483.	27.8	24
95	Stellar Populations and the Star Formation Histories of LSB Galaxies: IV <i>Spitzer</i> Surface Photometry of LSB Galaxies. Publications of the Astronomical Society of Australia, 2014, 31, .	3.4	24
96	STELLAR POPULATIONS AND THE STAR FORMATION HISTORIES OF LOW SURFACE BRIGHTNESS GALAXIES. II. H II REGIONS. Astronomical Journal, 2013, 146, 41.	4.7	23
97	Tracing the Dynamical Mass in Galaxy Disks Using H i Velocity Dispersion and Its Implications for the Dark Matter Distribution in Galaxies. Astrophysical Journal, 2020, 889, 10.	4.5	23
98	GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND. Astrophysical Journal, 2013, 772, 10.	4.5	22
99	A Precise Milky Way Rotation Curve Model for an Accurate Galactocentric Distance. Research Notes of the AAS, 2018, 2, 156.	0.7	22
100	The Imprint of Spiral Arms on the Galactic Rotation Curve. Astrophysical Journal, 2019, 885, 87.	4.5	21
101	<i>CHANDRA</i> OBSERVATIONS OF NUCLEAR X-RAY EMISSION FROM LOW SURFACE BRIGHTNESS GALAXIES. Astrophysical Journal, 2009, 693, 1300-1305.	4.5	20
102	Challenges for \hat{b} CDM and MOND. Journal of Physics: Conference Series, 2013, 437, 012001.	0.4	19
103	Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3551-3580.	4.4	19
104	THE CANDIDATE CLUSTER AND PROTOCLUSTER CATALOG (CCPC). II. SPECTROSCOPICALLY IDENTIFIED STRUCTURES SPANNING 2Â<ÂzÂ<Â6.6. Astrophysical Journal, 2016, 833, 15.	4.5	19
105	Stellar populations in shell galaxies. Astronomical Journal, 1990, 100, 1073.	4.7	19
106	The Baryonic Tully–Fisher Relation in the Local Group and the Equivalent Circular Velocity of Pressure-supported Dwarfs. Astronomical Journal, 2021, 162, 202.	4.7	19
107	Considerations on how to investigate planes of satellite galaxies. Astronomische Nachrichten, 2017, 338, 854-861.	1.2	16
108	Stellar Mass-to-light Ratios: Composite Bulge+Disk Models and the Baryonic Tully–Fisher Relation. Astronomical Journal, 2022, 163, 154.	4.7	16

#	Article	IF	CITATIONS
109	KINEMATIC AND PHOTOMETRIC EVIDENCE FOR A BAR IN NGC 2683. Astronomical Journal, 2009, 138, 1082-1089.	4.7	15
110	A new algorithm to quantify maximum discs in galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2292-2301.	4.4	15
111	The Halo Mass Function of Late-type Galaxies from H i Kinematics. Astrophysical Journal Letters, 2019, 886, L11.	8.3	15
112	THE CANDIDATE CLUSTER AND PROTOCLUSTER CATALOG (CCPC) OF SPECTROSCOPICALLY IDENTIFIED STRUCTURES SPANNING 2.74 < z < 3.71. Astrophysical Journal, 2016, 817, 158.	4.5	13
113	Strong Hydrogen Absorption at Cosmic Dawn: The Signature of a Baryonic Universe. Research Notes of the AAS, 2018, 2, 37.	0.7	13
114	Scaling Relations for Molecular Gas and Metallicity: Impact on the Baryonic Tully–Fisher Relation. Research Notes of the AAS, 2020, 4, 45.	0.7	13
115	The formation of spiral galaxies: adiabatic compression with Young's algorithm and the relation of dark matter haloes to their primordial antecedents. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1897-1908.	4.4	12
116	The link between mass distribution and starbursts in dwarf galaxiesâ~ Monthly Notices of the Royal Astronomical Society, 2015, 450, 3886-3892.	4.4	12
117	Could a Local Group X-Ray Halo Affect the X-Ray and Microwave Backgrounds?. Astrophysical Journal, 1996, 470, L77-L79.	4.5	12
118	[ITAL]Hubble[/ITAL] [ITAL]Space[/ITAL] [ITAL]Telescope[/ITAL] Wide Field Planetary Camera 2 Imaging of UGC 12695: A Remarkably Unevolved Galaxy at Low Redshift. Astronomical Journal, 1998, 116, 657-672.	4.7	11
119	A cautionary tale in fitting galaxy rotation curves with Bayesian techniques. Astronomy and Astrophysics, 2021, 646, L13.	5.1	10
120	Dark Matter Halo Masses from Abundance Matching and Kinematics: Tensions for the Milky Way and M31. Research Notes of the AAS, 2021, 5, 23.	0.7	10
121	Self-consistent Color–Stellar Mass-to-light Ratio Relations for Low Surface Brightness Galaxies. Astronomical Journal, 2020, 160, 122.	4.7	10
122	STELLAR POPULATIONS AND THE STAR FORMATION HISTORIES OF LSB GALAXIES. V. WFC3 COLOR–MAGNITUDE DIAGRAMS. Astronomical Journal, 2015, 150, 72.	4.7	9
123	Predictions for the Sky-Averaged Depth of the 21Âcm Absorption Signal at High Redshift in Cosmologies with and without Nonbaryonic Cold Dark Matter. Physical Review Letters, 2018, 121, 081305.	7.8	9
124	Star Formation and Tidal Encounters with the Low Surface Brightness Galaxy UGC 12695 and Companions. Astronomical Journal, 2000, 119, 2154-2165.	4.7	9
125	VIMOS-VLT integral field kinematics of the giant low surface brightness galaxy ESO 323-G064. Astronomy and Astrophysics, 2008, 490, 589-600.	5.1	8
126	Stellar feedback and the energy budget of late-type Galaxies: missing baryons and core creation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4287-4301.	4.4	8

#	Article	IF	CITATIONS
127	The tight empirical relation between dark matter halo mass and flat rotation velocity for late-type galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 483, L98-L103.	3.3	8
128	Mass–Velocity Dispersion Relation in HIFLUGCS Galaxy Clusters. Astrophysical Journal, 2021, 910, 56.	4.5	8
129	Comparing the Inner and Outer Star-forming Complexes in the Nearby Spiral Galaxies NGC 628, NGC 5457, and NGC 6946 Using UVIT Observations. Astrophysical Journal, 2021, 914, 54.	4.5	8
130	Contradiction between strong lensing statistics and a feedback solution to the cusp/core problem. Research in Astronomy and Astrophysics, 2010, 10, 1215-1222.	1.7	7
131	Is Dark Matter Real?. Scientific American, 2018, 319, 36-43.	1.0	7
132	Testing galaxy formation and dark matter with low surface brightness galaxies. Studies in History and Philosophy of Science Part A, 2021, 88, 220-236.	1.2	7
133	The Effect of Adiabatic Compression on Dark Matter Halos and the Radial Acceleration Relation. Astrophysical Journal, 2022, 927, 198.	4.5	7
134	Uncorrelated velocity and size residuals across galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	6
135	The Halo by Halo Missing Baryon Problem. Proceedings of the International Astronomical Union, 2007, 3, 136-145.	0.0	5
136	Mass–Velocity Dispersion Relation in MaNGA Brightest Cluster Galaxies. Astrophysical Journal Letters, 2021, 917, L24.	8.3	5
137	Dwarf and Low Surface Brightness Galaxies. , 1996, , 97-104.		5
138	Tidal Dwarf Galaxies: Disc Formation at (zsimeq0). Galaxies, 2015, 3, 184-191.	3.0	4
139	Spitzer's View of the Candidate Cluster and Protocluster Catalog (CCPC). Astrophysical Journal, 2017, 836, 136.	4.5	4
140	Universal twists. Nature, 1995, 377, 386-386.	27.8	3
141	MOND in the early universe. , 1999, , .		3
142	DYNAMICS AND THE SECOND PEAK: COLD DARK MATTER?. International Journal of Modern Physics A, 2001, 16, 1031-1033.	1.5	3
143	CONSTRAINTS ON THE RADIAL MASS DISTRIBUTION OF DARK MATTER HALOS FROM ROTATION CURVES. , 2002, , .		3
144	Social Through Dark Matter Science 2007 217 607 608	19.6	9

#	Article	IF	CITATIONS
145	THE INNER DYNAMICAL MASS ACROSS GALAXY MORPHOLOGY: A WEAK SCALING WITH TOTAL STELLAR MASS. Astrophysical Journal Letters, 2014, 782, L12.	8.3	3
146	The Extended Baryonic Halo of NGC 3923. Galaxies, 2017, 5, 29.	3.0	3
147	Dynamical regularities in rotating galaxies. Proceedings of the International Astronomical Union, 2019, 14, 144-151.	0.0	3
148	Anomalous Stellar Populations in Low-surface-brightness Galaxies. Astronomical Journal, 2021, 161, 91.	4.7	3
149	A comparison of the UV and HI properties of the extended UV (XUV) disk galaxies NGC 2541, NGC 5832 and ESO406-042. Journal of Astrophysics and Astronomy, 2021, 42, 1.	1.0	3
150	Baryons and Their Halos. , 2010, , .		2
151	Gas content and star formation thresholds in the evolution of spiral galaxies. AIP Conference Proceedings, 1997, , .	0.4	1
152	THREE CANDIDATE CLUSTERS AROUND HIGH REDSHIFT RADIO-LOUD SOURCES: MG1 J04426+0202, 3C 068.2, AND MS 1426.9+1052. Astronomical Journal, 2015, 150, 46.	4.7	1
153	An investigation of the efficiencies of various buffer gases in Na-Xe spin exchange. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 120, 124-128.	2.1	0
154	Dwarf and Low Surface Brightness Galaxies. Symposium - International Astronomical Union, 1996, 171, 97-104.	0.1	0
155	Dynamical stability and galaxy evolution in LSB disk galaxies. AIP Conference Proceedings, 1997, , .	0.4	0
156	Optical Galaxy Selection. International Astronomical Union Colloquium, 1999, 171, 19-26.	0.1	0
157	Two Dimensional Velocity Fields of Low Surface Brightness Galaxies. EAS Publications Series, 2006, 20, 285-286.	0.3	0
158	Radio Observations of the AGN and Gas in Low Surface Brightness Galaxies. Proceedings of the International Astronomical Union, 2006, 2, 90-90.	0.0	0
159	Two Dimensional Velocity Fields of Low Surface Brightness Galaxies. AIP Conference Proceedings, 2006, , .	0.4	0
160	Modified Newtonian Dynamics Close to Home. Science, 2007, 318, 568-570.	12.6	0
161	Radio Observations of AGN in Low Surface Brightness Galaxies. Proceedings of the International Astronomical Union, 2007, 3, 352-353.	0.0	0
162	The Episodic Star Formation History of Low Surface Brightness Galaxies. , 2010, , .		0

#	Article	IF	CITATIONS
163	Can bars erode cuspy halos?. Proceedings of the International Astronomical Union, 2019, 14, 184-185.	0.0	Ο
164	Some Systematic Properties of Rotation Curves. EAS Publications Series, 2006, 20, 69-76.	0.3	0
165	Properties of Low Surface Brightness Galaxies. , 1996, , 356-356.		0
166	A preliminary examination of redshift and luminosity characteristics for APM survey quasars. , 1988, , 418-420.		0
167	TWO DIMENSIONAL VELOCITY FIELDS OF LOW SURFACE BRIGHTNESS GALAXIES. , 2007, , 141-144.		0
168	Dynamical Regularities in Rotating Galaxies. Proceedings of the International Astronomical Union, 2019, 353, .	0.0	0
169	Galaxy Masses: Disks and Their Halos. , 0, , 45-50.		0