Elena V Kudryashova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066780/publications.pdf

Version: 2024-02-01

60 papers 1,281 citations

430874 18 h-index 32 g-index

65 all docs 65 docs citations

65 times ranked 1123 citing authors

#	Article	IF	CITATIONS
1	Computer simulation of the Receptor–Ligand Interactions of Mannose Receptor CD206 in Comparison with the Lectin Concanavalin A Model. Biochemistry (Moscow), 2022, 87, 54-69.	1.5	15
2	Improved Enzymatic Assay and Inhibition Analysis of Redox Membranotropic Enzymes, AtGALDH and TcGAL, Using a Reversed Micellar System. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 36-53.	1.7	5
3	Cholesterol Significantly Affects the Interactions between Pirfenidone and DPPC Liposomes: Spectroscopic Studies. Biophysica, 2022, 2, 79-88.	1.4	3
4	Improvement of Biocatalytic Properties and Cytotoxic Activity of L-Asparaginase from Rhodospirillum rubrum by Conjugation with Chitosan-Based Cationic Polyelectrolytes. Pharmaceuticals, 2022, 15, 406.	3.8	9
5	Spectroscopy Approach for Highly-Efficient Screening of Lectin-Ligand Interactions in Application for Mannose Receptor and Molecular Containers for Antibacterial Drugs. Pharmaceuticals, 2022, 15, 625.	3.8	13
6	Plant Alkylbenzenes and Terpenoids in the Form of Cyclodextrin Inclusion Complexes as Antibacterial Agents and Levofloxacin Synergists. Pharmaceuticals, 2022, 15, 861.	3.8	15
7	The formation of quasi-regular polymeric network of cross-linked sulfobutyl ether derivative of \hat{l}^2 -cyclodextrin synthesized with moxifloxacin as a template. Reactive and Functional Polymers, 2021, 159, 104811.	4.1	15
8	Phosphatidylinositol Stabilizes Fluid-Phase Liposomes Loaded with a Melphalan Lipophilic Prodrug. Pharmaceutics, 2021, 13, 473.	4.5	17
9	Experimental Methods to Study the Mechanisms of Interaction of Lipid Membranes with Low-Molecular-Weight Drugs. Russian Journal of Bioorganic Chemistry, 2020, 46, 480-497.	1.0	9
10	Physical and Chemical Properties of the Guest–Host Inclusion Complexes of Cyprofloxacin with β-Cyclodextrin Derivatives. Moscow University Chemistry Bulletin, 2020, 75, 218-224.	0.6	9
11	A Spectral Approach to Study Interaction between Chitosan Modified with Mannose and Concavalin A for the Creation of Address Delivery Systems of Antituberculosis Drugs. Moscow University Chemistry Bulletin, 2020, 75, 213-217.	0.6	10
12	Regulation of Properties of Lipid Membranes by Interaction with 2-Hydroxypropyl \hat{l}^2 -Cyclodextrin: Molecular Details. Russian Journal of Bioorganic Chemistry, 2020, 46, 692-701.	1.0	11
13	Effect of cross-linking on the inclusion complex formation of derivatized \hat{l}^2 -cyclodextrins with small-molecule drug moxifloxacin. Carbohydrate Research, 2020, 498, 108183.	2.3	17
14	Moxifloxacin interacts with lipid bilayer, causing dramatic changes in its structure and phase transitions. Chemistry and Physics of Lipids, 2020, 228, 104891.	3.2	19
15	FTIR-based L-asparaginase activity assay enables continuous measurements in optically dense media including blood plasma. Analytical Biochemistry, 2020, 598, 113694.	2.4	3
16	Magnetic nanorods for remote disruption of lipid membranes by non-heating low frequency magnetic field. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102065.	3.3	15
17	Targeted delivery of anti-tuberculosis drugs to macrophages: targeting mannose receptors. Russian Chemical Reviews, 2018, 87, 374-391.	6.5	27
18	In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field. ACS Nano, 2018, 12, 3190-3199.	14.6	33

#	Article	IF	Citations
19	Regulation of Catalytic Activity of Recombinant L-Asparaginase from Rhodospirillum rubrum by Conjugation with a PEG-Chitosan Copolymer. Moscow University Chemistry Bulletin, 2018, 73, 185-191.	0.6	7
20	Physicochemical Properties of the Inclusion Complex of Moxifloxacin with Hydroxypropyl- \hat{l}^2 -Cyclodextrin Synthesized by RESS. Russian Journal of Physical Chemistry B, 2018, 12, 1193-1204.	1.3	11
21	Adsorption Properties of Mesoporous Silica Gel with \hat{l}^2 -Cyclodextrin as a Pore-Forming Agent Relative to Moxifloxacin. Moscow University Chemistry Bulletin, 2018, 73, 192-198.	0.6	2
22	The Effect of Molecular Architecture of Sulfobutyl Ether \hat{l}^2 -Cyclodextrin Nanoparticles on Physicochemical Properties of Complexes with Moxifloxacin. Colloid Journal, 2018, 80, 312-319.	1.3	13
23	PEG-Chitosan as a Perspective Stabilizing Agent for Liposomal Suspensions: The Influence of the Molecular Weight and Degree of PEGylation on the Physicochemical Properties of the Complex. Moscow University Chemistry Bulletin, 2018, 73, 69-73.	0.6	3
24	Drug delivery systems for fluoroquinolones: New prospects in tuberculosis treatment. Russian Journal of Bioorganic Chemistry, 2017, 43, 487-501.	1.0	23
25	A study of the physicochemical properties and structure of moxifloxacin complex with methyl- \hat{l}^2 -cyclodextrin. Colloid Journal, 2017, 79, 668-676.	1.3	14
26	Thermodynamics and molecular insight in guest–host complexes of fluoroquinolones with β-cyclodextrin derivatives, as revealed by ATR-FTIR spectroscopy and molecular modeling experiments. Analytical and Bioanalytical Chemistry, 2017, 409, 6451-6462.	3.7	39
27	Moxifloxacin Micronization via Supercritical Antisolvent Precipitation. Russian Journal of Physical Chemistry B, 2017, 11, 1153-1162.	1.3	12
28	Structure and stability of fluoroquinolone-(2-hydroxypropyl)- \hat{l}^2 -cyclodextrin complexes as perspective antituberculosis drugs. Moscow University Chemistry Bulletin, 2016, 71, 1-6.	0.6	11
29	The formation of conjugates with PEG–chitosan improves the biocatalytic efficiency and antitumor activity of L-asparaginase from Erwinia carotovora. Moscow University Chemistry Bulletin, 2016, 71, 122-126.	0.6	6
30	Novel Prodrug of Doxorubicin Modified by Stearoylspermine Encapsulated into PEG-Chitosan-Stabilized Liposomes. Langmuir, 2016, 32, 10861-10869.	3.5	33
31	Effect of glycol chitosan on functional and structural properties of anionic liposomes. Moscow University Chemistry Bulletin, 2016, 71, 167-171.	0.6	4
32	Chiral Heteroditopic Baskets Designed from Triazolated Calixarenes and Short Peptides. Chemistry - A European Journal, 2016, 22, 12415-12423.	3.3	16
33	Lytic enzymes of staphylococcal phages: Correlation between secondary structure and stability. Moscow University Chemistry Bulletin, 2016, 71, 7-11.	0.6	1
34	Micronization of levofloxacin by supercritical antisolvent precipitation. Russian Journal of Physical Chemistry B, 2016, 10, 1201-1210.	1.3	11
35	New versatile approach for analysis of PEG content in conjugates and complexes with biomacromolecules based on FTIR spectroscopy Colloids and Surfaces B: Biointerfaces, 2016, 141, 36-43.	5.0	75
36	"Reagent-free―l-asparaginase activity assay based on CD spectroscopy and conductometry. Analytical and Bioanalytical Chemistry, 2016, 408, 1183-1189.	3.7	14

#	Article	IF	Citations
37	Bacterial recombinant L-asparaginases: Properties, structure, and anti-proliferative activity. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2015, 9, 325-338.	0.4	5
38	PEG-chitosan and glycol-chitosan for improvement of biopharmaceutical properties of recombinant L-asparaginase from Erwinia carotovora. Biochemistry (Moscow), 2015, 80, 113-119.	1.5	18
39	Cross-linking as a tool for enhancement of transfection efficiency of cationic vectors. European Polymer Journal, 2015, 69, 110-120.	5.4	5
40	Structure and stability of anionic liposomes complexes with PEG-chitosan branched copolymer. Russian Journal of Bioorganic Chemistry, 2014, 40, 547-557.	1.0	24
41	Application of PEG-chitosan copolymers for regulation of catalytic properties of enzymes for medical application using recombinant Erwinia carotovora L-asparaginase as an example. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2014, 8, 252-259.	0.4	8
42	Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 545-552.	2.3	14
43	Regulation of acid phosphatase in reverse micellar system by lipids additives: Structural aspects. Journal of Colloid and Interface Science, 2011, 353, 490-497.	9.4	7
44	Regulation of catalytic activity of acid phosphatase by lipids in a reverse micellar system. Biochemistry (Moscow), 2009, 74, 342-349.	1.5	3
45	Monomer Formation and Function of <i>p</i> àêHydroxybenzoate Hydroxylase in Reverse Micelles and in Dimethylsulfoxide/Water Mixtures. ChemBioChem, 2008, 9, 413-419.	2.6	9
46	Modulation of the adsorption properties at airâ€"water interfaces of complexes of egg white ovalbumin with pectin by the dielectric constant. Journal of Colloid and Interface Science, 2008, 318, 430-439.	9.4	12
47	Molecular Details of Ovalbuminâ^Pectin Complexes at the Air/Water Interface:  A Spectroscopic Study. Langmuir, 2007, 23, 7942-7950.	3.5	34
48	Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure. Protein Science, 2005, 14, 483-493.	7.6	37
49	Protein adsorption at air-water interfaces: A combination of details. Biopolymers, 2004, 74, 131-135.	2.4	51
50	Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface. European Biophysics Journal, 2003, 32, 553-562.	2.2	53
51	Solubilization and refolding of inclusion body proteins in reverse micelles. Analytical Biochemistry, 2003, 320, 234-238.	2.4	25
52	Stabilization and activation of α-chymotrypsin in water–organic solvent systems by complex formation with oligoamines. Protein Engineering, Design and Selection, 2003, 16, 303-309.	2.1	16
53	Chemical Modification Causes Similar Change in Dependence on Water Activity of Chymotrypsin Hydration and Catalysis in Hexane. Biocatalysis and Biotransformation, 2002, 20, 161-166.	2.0	6
54	Formation of quasi-regular compact structure of poly(methacrylic acid) upon an interaction with \hat{l}_{\pm} -chymotrypsin. BBA - Proteins and Proteomics, 2001, 1550, 129-143.	2.1	12

#	Article	IF	CITATION
55	The chemical modification of α-chymotrypsin with both hydrophobic and hydrophilic compounds stabilizes the enzyme against denaturation in water–organic media. Protein Engineering, Design and Selection, 2001, 14, 683-689.	2.1	40
56	Catalytic activity of thermolysin under extremes of pressure and temperature: modulation by metal ions. BBA - Proteins and Proteomics, 1998, 1386, 199-210.	2.1	26
57	Enzyme-polyelectrolyte complexes in water-ethanol mixtures: Negatively charged groups artificially introduced into $\hat{l}\pm$ -chymotrypsin provide additional activation and stabilization effects., 1997, 55, 267-277.		73
58	Stability of ?-chymotrypsin conjugated with poly (ethylene glycols) and proxanols at high temperature and in watercosolvent mixtures. Biotechnology Letters, 1996, 10, 849-854.	0.5	12
59	Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and Bioengineering, 1996, 52, 320-331.	3.3	196
60	Enzyme-polyelectrolyte noncovalent complexes as catalysts for reactions in binary mixtures of polar organic solvents with water. Biotechnology Letters, 1995, 17, 1329.	2.2	22