## Xiu-Bo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066552/publications.pdf Version: 2024-02-01



XIII-RO CHEN

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A rational quantum state sharing protocol with semi-off-line dealer. Chinese Physics B, 2022, 31, 050309.                                                                                         | 1.4 | 3         |
| 2  | Cyclic preparation of two-qubit state in two noisy environments. Quantum Information Processing, 2022, 21, 1.                                                                                     | 2.2 | 6         |
| 3  | W-state-based Semi-quantum Private Comparison. International Journal of Theoretical Physics, 2022, 61, 1.                                                                                         | 1.2 | 9         |
| 4  | An Efficient Semi-Quantum Private Comparison Protocol Based on Entanglement Swapping of<br>Four-Particle Cluster State and Bell State. International Journal of Theoretical Physics, 2022, 61, 1. | 1.2 | 1         |
| 5  | A secure crossing two qubits protocol based on quantum homomorphic encryption. Quantum Science and Technology, 2022, 7, 025027.                                                                   | 5.8 | 4         |
| 6  | Splitting an Arbitrary Three-Qubit State via a Five-Qubit Cluster State and a Bell State. Entropy, 2022, 24, 381.                                                                                 | 2.2 | 4         |
| 7  | Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle. Chinese Physics B, 2022, 31, 050308.                                                   | 1.4 | 2         |
| 8  | Hat problem: a new strategy based on quantum stabilizer codes. Quantum Information Processing, 2022, 21, 1.                                                                                       | 2.2 | 0         |
| 9  | Efficient quantum private comparison protocol utilizing single photons and rotational encryption.<br>Chinese Physics B, 2022, 31, 060307.                                                         | 1.4 | 7         |
| 10 | High-efficiency quantum image steganography protocol based on double-layer matrix coding.<br>Quantum Information Processing, 2022, 21, .                                                          | 2.2 | 3         |
| 11 | An efficient anti-quantum lattice-based blind signature for blockchain-enabled systems. Information Sciences, 2021, 546, 253-264.                                                                 | 6.9 | 47        |
| 12 | Quantum network coding without loss of information. Quantum Information Processing, 2021, 20, 1.                                                                                                  | 2.2 | 12        |
| 13 | Multi-party blind quantum computation protocol with mutual authentication in network. Science China Information Sciences, 2021, 64, 1.                                                            | 4.3 | 17        |
| 14 | A multimode quantum image representation and its encryption scheme. Quantum Information Processing, 2021, 20, 1.                                                                                  | 2.2 | 16        |
| 15 | An efficient semi-quantum private comparison without pre-shared keys. Quantum Information Processing, 2021, 20, 1.                                                                                | 2.2 | 11        |
| 16 | Searching for optimal quantum secret sharing scheme based on local distinguishability. Quantum<br>Information Processing, 2020, 19, 1.                                                            | 2.2 | 2         |
| 17 | A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Information Processing, 2020, 19, 1.                                                                             | 2.2 | 33        |
| 18 | An attempt at universal quantum secure multi-party computation with graph state. Physica Scripta, 2020, 95, 055106.                                                                               | 2.5 | 3         |

| #  | Article                                                                                                                                                                                 | IF                | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 19 | A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum Information Processing, 2019, 18, 1.                              | 2.2               | 12             |
| 20 | A universal protocol for controlled bidirectional quantum state transmission. Quantum Information Processing, 2019, 18, 1.                                                              | 2.2               | 8              |
| 21 | A quantum image dual-scrambling encryption scheme based on random permutation. Science China<br>Information Sciences, 2019, 62, 1.                                                      | 4.3               | 11             |
| 22 | Quantum homomorphic encryption scheme with flexible number of evaluator based on (k,) Tj ETQq0 0 0 rgBT /(                                                                              | Dverlock 1<br>6.9 | 0 Tf 50 622 To |
| 23 | Quantum Private Query With Perfect Performance Universally Applicable Against Collective-Noise.<br>IEEE Access, 2019, 7, 29313-29319.                                                   | 4.2               | 7              |
| 24 | Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Information Processing, 2019, 18, 1. | 2.2               | 28             |
| 25 | New quantum key agreement protocols based on cluster states. Quantum Information Processing, 2019, 18, 1.                                                                               | 2.2               | 19             |
| 26 | Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state.<br>Scientific Reports, 2019, 9, 2081.                                                  | 3.3               | 20             |
| 27 | Efficient quantum state transmission via perfect quantum network coding. Science China Information Sciences, 2019, 62, 1.                                                               | 4.3               | 11             |
| 28 | Asymmetric Controlled Bidirectional Remote Preparation of Single- and Three-Qubit Equatorial State in Noisy Environment. IEEE Access, 2019, 7, 2811-2822.                               | 4.2               | 16             |
| 29 | Secure quantum network coding based on quantum homomorphic message authentication. Quantum<br>Information Processing, 2019, 18, 1.                                                      | 2.2               | 5              |
| 30 | Quantum Network Communication With a Novel Discrete-Time Quantum Walk. IEEE Access, 2019, 7, 13634-13642.                                                                               | 4.2               | 28             |
| 31 | A New Lattice-Based Signature Scheme in Post-Quantum Blockchain Network. IEEE Access, 2019, 7, 2026-2033.                                                                               | 4.2               | 61             |
| 32 | Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Computers and Security, 2019, 81, 15-24.    | 6.0               | 18             |
| 33 | Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.        | 5.1               | 16             |
| 34 | A Secure Cryptocurrency Scheme Based on Post-Quantum Blockchain. IEEE Access, 2018, 6, 27205-27213.                                                                                     | 4.2               | 121            |
| 35 | A secure rational quantum state sharing protocol. Science China Information Sciences, 2018, 61, 1.                                                                                      | 4.3               | 22             |
| 36 | Quantum network communication: a discrete-time quantum-walk approach. Science China Information                                                                                         | 4.3               | 27             |

Sciences, 2018, 61, 1.

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Controlled Bidirectional Remote Preparation of Single- and Two-Qubit State. Lecture Notes in Computer Science, 2018, , 541-553.                                                   | 1.3 | 1         |
| 38 | Secure Multiparty Quantum Summation Based on d-Level Single Particles. Lecture Notes in Computer Science, 2018, , 680-690.                                                        | 1.3 | 2         |
| 39 | Rational protocol of quantum secure multi-party computation. Quantum Information Processing, 2018, 17, 1.                                                                         | 2.2 | 9         |
| 40 | Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Information Processing, 2018, 17, 1.                                                                | 2.2 | 38        |
| 41 | A kind of universal quantum secret sharing protocol. Scientific Reports, 2017, 7, 39845.                                                                                          | 3.3 | 11        |
| 42 | Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.              | 5.1 | 31        |
| 43 | Controlled bidirectional remote preparation of three-qubit state. Quantum Information Processing, 2017, 16, 1.                                                                    | 2.2 | 47        |
| 44 | The solvability of quantum k-pair network in a measurement-based way. Scientific Reports, 2017, 7,<br>16775.                                                                      | 3.3 | 1         |
| 45 | Novel Criteria for Deterministic Remote State Preparation via the Entangled Six-Qubit State. Entropy, 2016, 18, 267.                                                              | 2.2 | 16        |
| 46 | Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift<br>Quantum Key Distribution. Scientific Reports, 2016, 6, 31738.                 | 3.3 | 20        |
| 47 | Quantum private query with perfect user privacy against a joint-measurement attack. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2016, 380, 4033-4038. | 2.1 | 46        |
| 48 | An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type<br>Quantum States. Communications in Theoretical Physics, 2016, 65, 705-710.             | 2.5 | 3         |
| 49 | Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Science China<br>Information Sciences, 2016, 59, 1.                                           | 4.3 | 25        |
| 50 | Novel classical post-processing for quantum key distribution-based quantum private query. Quantum<br>Information Processing, 2016, 15, 3833-3840.                                 | 2.2 | 39        |
| 51 | A novel protocol for multiparty quantum key management. Quantum Information Processing, 2015, 14, 2959-2980.                                                                      | 2.2 | 39        |
| 52 | Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm. International<br>Journal of Theoretical Physics, 2015, 54, 2436-2445.                               | 1.2 | 8         |
| 53 | The Quantum Steganography Protocol via Quantum Noisy Channels. International Journal of Theoretical Physics, 2015, 54, 2505-2515.                                                 | 1.2 | 20        |
| 54 | Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise. Chinese Physics B, 2015, 24, 040304.                                | 1.4 | 5         |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A novel quantum information hiding protocol based on entanglement swapping of high-level Bell<br>states. Chinese Physics B, 2015, 24, 050306.                                    | 1.4 | 2         |
| 56 | Network coding for quantum cooperative multicast. Quantum Information Processing, 2015, 14, 4297-4322.                                                                           | 2.2 | 39        |
| 57 | Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph.<br>Quantum Information Processing, 2015, 14, 4691-4713.                             | 2.2 | 4         |
| 58 | A new quantum sealed-bid auction protocol with secret order in post-confirmation. Quantum<br>Information Processing, 2015, 14, 3899-3911.                                        | 2.2 | 12        |
| 59 | Perfect Quantum Network Coding Independent of Classical Network Solutions. IEEE Communications<br>Letters, 2015, 19, 115-118.                                                    | 4.1 | 43        |
| 60 | Quantum state sharing of arbitrary known multi-qubit and multi-qudit states. International Journal of Quantum Information, 2014, 12, 1450014.                                    | 1.1 | 7         |
| 61 | Quantum state secure transmission in network communications. Information Sciences, 2014, 276, 363-376.                                                                           | 6.9 | 16        |
| 62 | Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Information Processing, 2014, 13, 101-112.                 | 2.2 | 49        |
| 63 | Asymmetric Quantum Information Splitting of an Arbitrary N-qubit State via GHZ-like State and Bell<br>States. International Journal of Theoretical Physics, 2014, 53, 1848-1861. | 1.2 | 3         |
| 64 | Quantum secret sharing for general access structures based on multiparticle entanglements.<br>Quantum Information Processing, 2014, 13, 429-443.                                 | 2.2 | 17        |
| 65 | Schemes for remotely preparing an arbitrary four-qubit \$\$chi \$\$ χ -state. Quantum Information<br>Processing, 2014, 13, 1951-1965.                                            | 2.2 | 15        |
| 66 | Multi-party quantum state sharing of an arbitrary multi-qubit state via \$\$chi \$\$ χ -type entangled<br>states. Quantum Information Processing, 2014, 13, 2081-2098.           | 2.2 | 6         |
| 67 | Joint Remote Preparation of an Arbitrary Two-Qubit State in Noisy Environments. International<br>Journal of Theoretical Physics, 2014, 53, 2236-2245.                            | 1.2 | 46        |
| 68 | A class of protocols for quantum private comparison based on the symmetry of states. Quantum<br>Information Processing, 2014, 13, 85-100.                                        | 2.2 | 20        |
| 69 | Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state.<br>Quantum Information Processing, 2014, 13, 43-57.                            | 2.2 | 27        |
| 70 | Random quantum evolution. Quantum Information Processing, 2013, 12, 3353-3367.                                                                                                   | 2.2 | 0         |
| 71 | The rational approximations of the unitary groups. Quantum Information Processing, 2013, 12, 3149-3166.                                                                          | 2.2 | 0         |
| 72 | Expansible quantum secret sharing network. Quantum Information Processing, 2013, 12, 2877-2888.                                                                                  | 2.2 | 21        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The Power of Qutrit Logic for Quantum Computation. International Journal of Theoretical Physics, 2013, 52, 2959-2965.                                                       | 1.2 | 4         |
| 74 | Faithful Transfer Arbitrary Pure States with Mixed Resources. International Journal of Theoretical Physics, 2013, 52, 3032-3044.                                            | 1.2 | 1         |
| 75 | A blind quantum signature protocol using the GHZ states. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1636-1641.                                              | 5.1 | 35        |
| 76 | High-efficiency quantum steganography based on the tensor product of Bell states. Science China:<br>Physics, Mechanics and Astronomy, 2013, 56, 1745-1754.                  | 5.1 | 16        |
| 77 | Quantum Teleportation and State Sharing via a Generalized Seven-Qubit Brown State. International<br>Journal of Theoretical Physics, 2013, 52, 3413-3431.                    | 1.2 | 8         |
| 78 | A Novel Quantum Covert Channel Protocol Based on Any Quantum Secure Direct Communication Scheme. Communications in Theoretical Physics, 2013, 59, 547-553.                  | 2.5 | 8         |
| 79 | Schemes for Remotely Preparing a Six-Particle Entangled Cluster-Type State. International Journal of Theoretical Physics, 2013, 52, 968-979.                                | 1.2 | 6         |
| 80 | Attack on the Improved Quantum Blind Signature Protocol. International Journal of Theoretical Physics, 2013, 52, 331-335.                                                   | 1.2 | 7         |
| 81 | Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Information Processing, 2013, 12, 365-380.                     | 2.2 | 62        |
| 82 | Comment on "High-dimensional deterministic multiparty quantum secret sharing without unitary<br>operations― Quantum Information Processing, 2013, 12, 785-792.              | 2.2 | 11        |
| 83 | CRYPTANALYSIS OF THE QUANTUM STATE SHARING PROTOCOL USING FOUR SETS OF W-CLASS STATES.<br>International Journal of Quantum Information, 2013, 11, 1350010.                  | 1.1 | 14        |
| 84 | A NOVEL QUANTUM STEGANOGRAPHY PROTOCOL BASED ON PROBABILITY MEASUREMENTS. International Journal of Quantum Information, 2013, 11, 1350068.                                  | 1.1 | 9         |
| 85 | Deterministic Joint Remote Preparation of an Arbitrary Two-Qubit State Using the Cluster State.<br>Communications in Theoretical Physics, 2013, 59, 568-572.                | 2.5 | 11        |
| 86 | Steganalysis and improvement of a quantum steganography protocol via a GHZ4state. Chinese Physics<br>B, 2013, 22, 060307.                                                   | 1.4 | 9         |
| 87 | Quantum Message Distribution. Communications in Theoretical Physics, 2013, 59, 37-42.                                                                                       | 2.5 | 0         |
| 88 | N-to-M JOINT REMOTE STATE PREPARATION OF 2-LEVEL STATES. International Journal of Quantum<br>Information, 2012, 10, 1250006.                                                | 1.1 | 12        |
| 89 | AN EFFICIENT PROTOCOL FOR THE QUANTUM PRIVATE COMPARISON OF EQUALITY WITH A FOUR-QUBIT CLUSTER STATE. International Journal of Quantum Information, 2012, 10, 1250045.      | 1.1 | 39        |
| 90 | Controlled-Joint Remote Preparation of an Arbitrary Two-Qubit State via Non-maximally Entangled Channel. International Journal of Theoretical Physics, 2012, 51, 3575-3586. | 1.2 | 27        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Information Processing, 2012, 11, 1715-1739.                                          | 2.2 | 7         |
| 92  | Controlled remote state preparation of arbitrary two and three qubit states via the Brown state.<br>Quantum Information Processing, 2012, 11, 1653-1667.                                                       | 2.2 | 91        |
| 93  | Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state.<br>Physica Scripta, 2012, 86, 055002.                                                                         | 2.5 | 19        |
| 94  | Experimental architecture of joint remote state preparation. Quantum Information Processing, 2012, 11, 751-767.                                                                                                | 2.2 | 48        |
| 95  | Remote preparation of a four-particle entangled cluster-type state. Optics Communications, 2011, 284, 4088-4093.                                                                                               | 2.1 | 44        |
| 96  | Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Optics Communications, 2011, 284, 1719-1720.                                                               | 2.1 | 17        |
| 97  | Quantum steganography with large payload based on entanglement swapping of χ-type entangled states.<br>Optics Communications, 2011, 284, 2075-2082.                                                            | 2.1 | 39        |
| 98  | Scheme for Cloning a Three-Particle GHZ Class State with Assistance. Communications in Theoretical Physics, 2011, 55, 771-774.                                                                                 | 2.5 | 2         |
| 99  | CRYPTANALYSIS AND IMPROVEMENT OF THE SECURE QUANTUM SEALED-BID AUCTION WITH POSTCONFIRMATION. International Journal of Quantum Information, 2011, 09, 1383-1392.                                               | 1.1 | 12        |
| 100 | Centrally controlled quantum teleportation. Optics Communications, 2010, 283, 4802-4809.                                                                                                                       | 2.1 | 38        |
| 101 | Deterministic Clone of an Unknown N-Qubit Entangled State with Assistance. International Journal of<br>Theoretical Physics, 2010, 49, 2704-2712.                                                               | 1.2 | 2         |
| 102 | An Efficient Protocol for the Secure Multi-party Quantum Summation. International Journal of Theoretical Physics, 2010, 49, 2793-2804.                                                                         | 1.2 | 72        |
| 103 | An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Optics Communications, 2010, 283, 1561-1565.                       | 2.1 | 202       |
| 104 | Probabilistic quantum network coding of -qudit states over the butterfly network. Optics<br>Communications, 2010, 283, 497-501.                                                                                | 2.1 | 52        |
| 105 | Novel quantum steganography with large payload. Optics Communications, 2010, 283, 4782-4786.                                                                                                                   | 2.1 | 64        |
| 106 | Joint remote preparation of an arbitrary three-qubit state. Optics Communications, 2010, 283, 4796-4801.                                                                                                       | 2.1 | 121       |
| 107 | Multiparty quantum secret sharing based on Bell measurement. Optics Communications, 2009, 282, 3647-3651.                                                                                                      | 2.1 | 79        |
| 108 | Comment on "General relation between the transformation operator and an invariant under<br>stochastic local operations and classical communication in quantum teleportation― Physical Review<br>A, 2009, 79, . | 2.5 | 20        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Quantum circuits for controlled teleportation of two-particle entanglement via a W state. Optics Communications, 2008, 281, 2331-2335.                                                             | 2.1 | 45        |
| 110 | An efficient and secure multiparty quantum secret sharing scheme based on single photons. Optics<br>Communications, 2008, 281, 6130-6134.                                                          | 2.1 | 92        |
| 111 | Teleportation of an unknown two-particle entangled state via an asymmetric three-particle<br>entanglement state. Journal of China Universities of Posts and Telecommunications, 2008, 15, 102-105. | 0.8 | 1         |
| 112 | CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH W STATE. International Journal of Quantum Information, 2008, 06, 899-906.                                                                      | 1.1 | 83        |
| 113 | CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM ENCRYPTION. International Journal of Quantum Information, 2008, 06, 543-551.                                                           | 1.1 | 70        |
| 114 | QUANTUM CIRCUITS FOR PROBABILISTIC ENTANGLEMENT TELEPORTATION VIA A PARTIALLY ENTANGLED PAIR.<br>International Journal of Quantum Information, 2007, 05, 717-728.                                  | 1.1 | 19        |
| 115 | Probabilistic teleportation of a two-particle entangled state via a partially entangled pair. Journal of China Universities of Posts and Telecommunications, 2006, 13, 39-42.                      | 0.8 | 2         |
| 116 | Quantum multicast communication over the butterfly network. Chinese Physics B, O, , .                                                                                                              | 1.4 | 3         |
| 117 | High dimensional quantum network coding based on prediction mechanism over the butterfly network. Quantum Science and Technology, 0, , .                                                           | 5.8 | 3         |