Xiu-Bo Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066552/publications.pdf

Version: 2024-02-01

206112 147801 2,857 117 31 48 h-index citations g-index papers 119 119 119 784 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Optics Communications, 2010, 283, 1561-1565.	2.1	202
2	Joint remote preparation of an arbitrary three-qubit state. Optics Communications, 2010, 283, 4796-4801.	2.1	121
3	A Secure Cryptocurrency Scheme Based on Post-Quantum Blockchain. IEEE Access, 2018, 6, 27205-27213.	4.2	121
4	An efficient and secure multiparty quantum secret sharing scheme based on single photons. Optics Communications, 2008, 281, 6130-6134.	2.1	92
5	Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Information Processing, 2012, 11, 1653-1667.	2.2	91
6	CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH W STATE. International Journal of Quantum Information, 2008, 06, 899-906.	1.1	83
7	Multiparty quantum secret sharing based on Bell measurement. Optics Communications, 2009, 282, 3647-3651.	2.1	79
8	An Efficient Protocol for the Secure Multi-party Quantum Summation. International Journal of Theoretical Physics, 2010, 49, 2793-2804.	1.2	72
9	CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM ENCRYPTION. International Journal of Quantum Information, 2008, 06, 543-551.	1.1	70
10	Novel quantum steganography with large payload. Optics Communications, 2010, 283, 4782-4786.	2.1	64
11	Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Information Processing, 2013, 12, 365-380.	2.2	62
12	A New Lattice-Based Signature Scheme in Post-Quantum Blockchain Network. IEEE Access, 2019, 7, 2026-2033.	4.2	61
13	Probabilistic quantum network coding of -qudit states over the butterfly network. Optics Communications, 2010, 283, 497-501.	2.1	52
14	Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Information Processing, 2014, 13, 101-112.	2.2	49
15	Experimental architecture of joint remote state preparation. Quantum Information Processing, 2012, 11, 751-767.	2.2	48
16	Controlled bidirectional remote preparation of three-qubit state. Quantum Information Processing, 2017, 16, 1.	2.2	47
17	An efficient anti-quantum lattice-based blind signature for blockchain-enabled systems. Information Sciences, 2021, 546, 253-264.	6.9	47
18	Joint Remote Preparation of an Arbitrary Two-Qubit State in Noisy Environments. International Journal of Theoretical Physics, 2014, 53, 2236-2245.	1.2	46

#	Article	IF	Citations
19	Quantum private query with perfect user privacy against a joint-measurement attack. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 4033-4038.	2.1	46
20	Quantum circuits for controlled teleportation of two-particle entanglement via a W state. Optics Communications, 2008, 281, 2331-2335.	2.1	45
21	Remote preparation of a four-particle entangled cluster-type state. Optics Communications, 2011, 284, 4088-4093.	2.1	44
22	Perfect Quantum Network Coding Independent of Classical Network Solutions. IEEE Communications Letters, 2015, 19, 115-118.	4.1	43
23	Quantum steganography with large payload based on entanglement swapping of χ-type entangled states. Optics Communications, 2011, 284, 2075-2082.	2.1	39
24	AN EFFICIENT PROTOCOL FOR THE QUANTUM PRIVATE COMPARISON OF EQUALITY WITH A FOUR-QUBIT CLUSTER STATE. International Journal of Quantum Information, 2012, 10, 1250045.	1.1	39
25	A novel protocol for multiparty quantum key management. Quantum Information Processing, 2015, 14, 2959-2980.	2.2	39
26	Network coding for quantum cooperative multicast. Quantum Information Processing, 2015, 14, 4297-4322.	2.2	39
27	Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Information Processing, 2016, 15, 3833-3840.	2.2	39
28	Centrally controlled quantum teleportation. Optics Communications, 2010, 283, 4802-4809.	2.1	38
29	Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Information Processing, 2018, 17, 1.	2.2	38
30	A blind quantum signature protocol using the GHZ states. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1636-1641.	5.1	35
31	A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Information Processing, 2020, 19, 1.	2.2	33
32	Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	31
33	Quantum homomorphic encryption scheme with flexible number of evaluator based on (k,) Tj ETQq1 1 0.784314	ł rgBT /Ov	erlock 10 Ti
34	Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended Bell state. Quantum Information Processing, 2019, 18, 1.	2.2	28
35	Quantum Network Communication With a Novel Discrete-Time Quantum Walk. IEEE Access, 2019, 7, 13634-13642.	4.2	28
36	Controlled-Joint Remote Preparation of an Arbitrary Two-Qubit State via Non-maximally Entangled Channel. International Journal of Theoretical Physics, 2012, 51, 3575-3586.	1.2	27

#	Article	IF	Citations
37	Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum Information Processing, 2014, 13, 43-57.	2.2	27
38	Quantum network communication: a discrete-time quantum-walk approach. Science China Information Sciences, $2018, 61, 1$.	4.3	27
39	Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Science China Information Sciences, $2016, 59, 1$.	4.3	25
40	A secure rational quantum state sharing protocol. Science China Information Sciences, 2018, 61, 1.	4.3	22
41	Expansible quantum secret sharing network. Quantum Information Processing, 2013, 12, 2877-2888.	2.2	21
42	Comment on "General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation― Physical Review A, 2009, 79, .	2.5	20
43	A class of protocols for quantum private comparison based on the symmetry of states. Quantum Information Processing, 2014, 13, 85-100.	2.2	20
44	The Quantum Steganography Protocol via Quantum Noisy Channels. International Journal of Theoretical Physics, 2015, 54, 2505-2515.	1.2	20
45	Practical Quantum Private Database Queries Based on Passive Round-Robin Differential Phase-shift Quantum Key Distribution. Scientific Reports, 2016, 6, 31738.	3.3	20
46	Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Scientific Reports, 2019, 9, 2081.	3.3	20
47	QUANTUM CIRCUITS FOR PROBABILISTIC ENTANGLEMENT TELEPORTATION VIA A PARTIALLY ENTANGLED PAIR. International Journal of Quantum Information, 2007, 05, 717-728.	1.1	19
48	Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Physica Scripta, 2012, 86, 055002.	2.5	19
49	New quantum key agreement protocols based on cluster states. Quantum Information Processing, 2019, 18, 1.	2.2	19
50	Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Computers and Security, 2019, 81, 15-24.	6.0	18
51	Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs. Optics Communications, 2011, 284, 1719-1720.	2.1	17
52	Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Information Processing, 2014, 13, 429-443.	2.2	17
53	Multi-party blind quantum computation protocol with mutual authentication in network. Science China Information Sciences, 2021, 64, 1.	4.3	17
54	High-efficiency quantum steganography based on the tensor product of Bell states. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1745-1754.	5.1	16

#	Article	IF	Citations
55	Quantum state secure transmission in network communications. Information Sciences, 2014, 276, 363-376.	6.9	16
56	Novel Criteria for Deterministic Remote State Preparation via the Entangled Six-Qubit State. Entropy, 2016, 18, 267.	2.2	16
57	Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	16
58	Asymmetric Controlled Bidirectional Remote Preparation of Single- and Three-Qubit Equatorial State in Noisy Environment. IEEE Access, 2019, 7, 2811-2822.	4.2	16
59	A multimode quantum image representation and its encryption scheme. Quantum Information Processing, 2021, 20, 1.	2.2	16
60	Schemes for remotely preparing an arbitrary four-qubit \$\$chi \$\$ χ -state. Quantum Information Processing, 2014, 13, 1951-1965.	2.2	15
61	CRYPTANALYSIS OF THE QUANTUM STATE SHARING PROTOCOL USING FOUR SETS OF W-CLASS STATES. International Journal of Quantum Information, 2013, 11, 1350010.	1.1	14
62	CRYPTANALYSIS AND IMPROVEMENT OF THE SECURE QUANTUM SEALED-BID AUCTION WITH POSTCONFIRMATION. International Journal of Quantum Information, 2011, 09, 1383-1392.	1.1	12
63	N-to-M JOINT REMOTE STATE PREPARATION OF 2-LEVEL STATES. International Journal of Quantum Information, 2012, 10, 1250006.	1.1	12
64	A new quantum sealed-bid auction protocol with secret order in post-confirmation. Quantum Information Processing, 2015, 14, 3899-3911.	2.2	12
65	A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum Information Processing, 2019, 18, 1.	2.2	12
66	Quantum network coding without loss of information. Quantum Information Processing, 2021, 20, 1.	2.2	12
67	Comment on "High-dimensional deterministic multiparty quantum secret sharing without unitary operationsâ€. Quantum Information Processing, 2013, 12, 785-792.	2.2	11
68	Deterministic Joint Remote Preparation of an Arbitrary Two-Qubit State Using the Cluster State. Communications in Theoretical Physics, 2013, 59, 568-572.	2.5	11
69	A kind of universal quantum secret sharing protocol. Scientific Reports, 2017, 7, 39845.	3.3	11
70	A quantum image dual-scrambling encryption scheme based on random permutation. Science China Information Sciences, 2019, 62, 1.	4.3	11
71	Efficient quantum state transmission via perfect quantum network coding. Science China Information Sciences, $2019, 62, 1.$	4.3	11
72	An efficient semi-quantum private comparison without pre-shared keys. Quantum Information Processing, 2021, 20, 1.	2.2	11

#	Article	IF	Citations
73	A NOVEL QUANTUM STEGANOGRAPHY PROTOCOL BASED ON PROBABILITY MEASUREMENTS. International Journal of Quantum Information, 2013, 11, 1350068.	1.1	9
74	Steganalysis and improvement of a quantum steganography protocol via a GHZ4state. Chinese Physics B, 2013, 22, 060307.	1.4	9
75	Rational protocol of quantum secure multi-party computation. Quantum Information Processing, 2018, 17, 1.	2.2	9
76	W-state-based Semi-quantum Private Comparison. International Journal of Theoretical Physics, 2022, 61, 1.	1.2	9
77	Quantum Teleportation and State Sharing via a Generalized Seven-Qubit Brown State. International Journal of Theoretical Physics, 2013, 52, 3413-3431.	1.2	8
78	A Novel Quantum Covert Channel Protocol Based on Any Quantum Secure Direct Communication Scheme. Communications in Theoretical Physics, 2013, 59, 547-553.	2.5	8
79	Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm. International Journal of Theoretical Physics, 2015, 54, 2436-2445.	1.2	8
80	A universal protocol for controlled bidirectional quantum state transmission. Quantum Information Processing, 2019, 18, 1.	2.2	8
81	Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Information Processing, 2012, 11, 1715-1739.	2.2	7
82	Attack on the Improved Quantum Blind Signature Protocol. International Journal of Theoretical Physics, 2013, 52, 331-335.	1.2	7
83	Quantum state sharing of arbitrary known multi-qubit and multi-qudit states. International Journal of Quantum Information, 2014, 12, 1450014.	1.1	7
84	Quantum Private Query With Perfect Performance Universally Applicable Against Collective-Noise. IEEE Access, 2019, 7, 29313-29319.	4.2	7
85	Efficient quantum private comparison protocol utilizing single photons and rotational encryption. Chinese Physics B, 2022, 31, 060307.	1.4	7
86	Schemes for Remotely Preparing a Six-Particle Entangled Cluster-Type State. International Journal of Theoretical Physics, 2013, 52, 968-979.	1.2	6
87	Multi-party quantum state sharing of an arbitrary multi-qubit state via \$\$chi \$\$ χ -type entangled states. Quantum Information Processing, 2014, 13, 2081-2098.	2.2	6
88	Cyclic preparation of two-qubit state in two noisy environments. Quantum Information Processing, 2022, 21, 1.	2.2	6
89	Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise. Chinese Physics B, 2015, 24, 040304.	1.4	5
90	Secure quantum network coding based on quantum homomorphic message authentication. Quantum Information Processing, 2019, $18, 1.$	2.2	5

#	Article	IF	Citations
91	The Power of Qutrit Logic for Quantum Computation. International Journal of Theoretical Physics, 2013, 52, 2959-2965.	1.2	4
92	Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph. Quantum Information Processing, 2015, 14, 4691-4713.	2.2	4
93	A secure crossing two qubits protocol based on quantum homomorphic encryption. Quantum Science and Technology, 2022, 7, 025027.	5.8	4
94	Splitting an Arbitrary Three-Qubit State via a Five-Qubit Cluster State and a Bell State. Entropy, 2022, 24, 381.	2.2	4
95	Asymmetric Quantum Information Splitting of an Arbitrary N-qubit State via GHZ-like State and Bell States. International Journal of Theoretical Physics, 2014, 53, 1848-1861.	1.2	3
96	An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States. Communications in Theoretical Physics, 2016, 65, 705-710.	2.5	3
97	An attempt at universal quantum secure multi-party computation with graph state. Physica Scripta, 2020, 95, 055106.	2.5	3
98	Quantum multicast communication over the butterfly network. Chinese Physics B, O, , .	1.4	3
99	High dimensional quantum network coding based on prediction mechanism over the butterfly network. Quantum Science and Technology, 0, , .	5.8	3
100	A rational quantum state sharing protocol with semi-off-line dealer. Chinese Physics B, 2022, 31, 050309.	1.4	3
101	High-efficiency quantum image steganography protocol based on double-layer matrix coding. Quantum Information Processing, 2022, 21, .	2.2	3
102	Probabilistic teleportation of a two-particle entangled state via a partially entangled pair. Journal of China Universities of Posts and Telecommunications, 2006, 13, 39-42.	0.8	2
103	Deterministic Clone of an Unknown N-Qubit Entangled State with Assistance. International Journal of Theoretical Physics, 2010, 49, 2704-2712.	1.2	2
104	Scheme for Cloning a Three-Particle GHZ Class State with Assistance. Communications in Theoretical Physics, 2011, 55, 771-774.	2.5	2
105	A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states. Chinese Physics B, 2015, 24, 050306.	1.4	2
106	Secure Multiparty Quantum Summation Based on d-Level Single Particles. Lecture Notes in Computer Science, 2018, , 680-690.	1.3	2
107	Searching for optimal quantum secret sharing scheme based on local distinguishability. Quantum Information Processing, 2020, 19, 1.	2.2	2
108	Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle. Chinese Physics B, 2022, 31, 050308.	1.4	2

XIU-BO CHEN

#	Article	IF	CITATIONS
109	Teleportation of an unknown two-particle entangled state via an asymmetric three-particle entanglement state. Journal of China Universities of Posts and Telecommunications, 2008, 15, 102-105.	0.8	1
110	Faithful Transfer Arbitrary Pure States with Mixed Resources. International Journal of Theoretical Physics, 2013, 52, 3032-3044.	1.2	1
111	The solvability of quantum k-pair network in a measurement-based way. Scientific Reports, 2017, 7, 16775.	3.3	1
112	Controlled Bidirectional Remote Preparation of Single- and Two-Qubit State. Lecture Notes in Computer Science, 2018, , 541-553.	1.3	1
113	An Efficient Semi-Quantum Private Comparison Protocol Based on Entanglement Swapping of Four-Particle Cluster State and Bell State. International Journal of Theoretical Physics, 2022, 61, 1.	1.2	1
114	Random quantum evolution. Quantum Information Processing, 2013, 12, 3353-3367.	2.2	0
115	The rational approximations of the unitary groups. Quantum Information Processing, 2013, 12, 3149-3166.	2.2	O
116	Quantum Message Distribution. Communications in Theoretical Physics, 2013, 59, 37-42.	2.5	0
117	Hat problem: a new strategy based on quantum stabilizer codes. Quantum Information Processing, 2022, 21, 1.	2.2	O