
Mario Losen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmunity Reviews, 2022, 21, 103104.	2.5	7
2	Autoimmune Encephalitis With mGluR1 Antibodies Presenting With Epilepsy, but Without Cerebellar Signs. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1171.	3.1	4
3	FTY720 decreases ceramides levels in the brain and prevents memory impairments in a mouse model of familial Alzheimer's disease expressing APOE4. Biomedicine and Pharmacotherapy, 2022, 152, 113240.	2.5	5
4	CERTL reduces C16 ceramide, amyloid-β levels, and inflammation in a model of Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 45.	3.0	16
5	The search for an autoimmune origin of psychotic disorders: Prevalence of autoantibodies against hippocampus antigens, glutamic acid decarboxylase and nuclear antigens. Schizophrenia Research, 2021, 228, 462-471.	1.1	6
6	Altered sphingolipid function in Alzheimer's disease; a gene regulatory network approach. Neurobiology of Aging, 2021, 102, 178-187.	1.5	8
7	Immunofluorescence Labeling of Lipid-Binding Proteins CERTs to Monitor Lipid Raft Dynamics. Methods in Molecular Biology, 2021, 2187, 327-335.	0.4	1
8	Effects of Sex, Age, and Apolipoprotein E Genotype on Brain Ceramides and Sphingosine-1-Phosphate in Alzheimer's Disease and Control Mice. Frontiers in Aging Neuroscience, 2021, 13, 765252.	1.7	7
9	Sphingolipids in Alzheimer's disease, how can we target them?. Advanced Drug Delivery Reviews, 2020, 159, 214-231.	6.6	53
10	Absence of Autoantibodies Against Neuronal Surface Antigens in Sera of Patients With Psychotic Disorders. JAMA Psychiatry, 2020, 77, 322.	6.0	8
11	Novel neuronal surface autoantibodies in plasma of patients with depression and anxiety. Translational Psychiatry, 2020, 10, 404.	2.4	10
12	Ceramide analog [18F]F-HPA-12 detects sphingolipid disbalance in the brain of Alzheimer's disease transgenic mice by functioning as a metabolic probe. Scientific Reports, 2020, 10, 19354.	1.6	9
13	Unidentified Neuronal Surface IgG Autoantibodies in a Case of Hashimoto's Encephalopathy. Frontiers in Immunology, 2020, 11, 1358.	2.2	0
14	Autoimmunity in psychotic disorders. Where we stand, challenges and opportunities. Autoimmunity Reviews, 2019, 18, 102348.	2.5	30
15	Low prevalence of Merkel cell polyomavirus in human epithelial thymic tumors. Thoracic Cancer, 2019, 10, 445-451.	0.8	5
16	Characterization of the thymus in Lrp4 myasthenia gravis: Four cases. Autoimmunity Reviews, 2019, 18, 50-55.	2.5	18
17	Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight, 2019, 4, .	2.3	43
18	Passive transfer models of myasthenia gravis with muscleâ€specific kinase antibodies. Annals of the New York Academy of Sciences, 2018, 1413, 111-118.	1.8	4

#	Article	IF	CITATIONS
19	Animal Models of Myasthenia Gravis for Preclinical Evaluation. , 2018, , 61-70.		0
20	The effect of Mindfulness-Based Stress Reduction on wound healing: a preliminary study. Journal of Behavioral Medicine, 2018, 41, 385-397.	1.1	12
21	Addendum: Hoffmann, C.; et al. Autoantibodies in Neuropsychiatric Disorders. Antibodies 2016, 5, 9. Antibodies, 2018, 7, 33.	1.2	1
22	Synergistic Effects of NOTCH/γ-Secretase Inhibition and Standard of Care Treatment Modalities in Non-small Cell Lung Cancer Cells. Frontiers in Oncology, 2018, 8, 460.	1.3	22
23	Alpha7 acetylcholine receptor autoantibodies are rare in sera of patients diagnosed with schizophrenia or bipolar disorder. PLoS ONE, 2018, 13, e0208412.	1.1	9
24	Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly. Journal of the American Medical Directors Association, 2017, 18, 608-615.	1.2	37
25	lgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. Journal of Autoimmunity, 2017, 77, 104-115.	3.0	92
26	Synthesis, Radiosynthesis, and Preliminary in vitro and in vivo Evaluation of the Fluorinated Ceramide Trafficking Inhibitor (HPA-12) for Brain Applications. Journal of Alzheimer's Disease, 2017, 60, 783-794.	1.2	11
27	Characterization of an anti-fetal AChR monoclonal antibody isolated from a myasthenia gravis patient. Scientific Reports, 2017, 7, 14426.	1.6	17
28	Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys. Scientific Reports, 2017, 7, 992.	1.6	10
29	Neuronal Surface Autoantibodies in Neuropsychiatric Disorders: Are There Implications for Depression?. Frontiers in Immunology, 2017, 8, 752.	2.2	14
30	Autoantibodies in Neuropsychiatric Disorders. Antibodies, 2016, 5, 9.	1.2	22
31	Silencing of Dok-7 in Adult Rat Muscle Increases Susceptibility to Passive Transfer Myasthenia Gravis. American Journal of Pathology, 2016, 186, 2559-2568.	1.9	12
32	Myasthenia gravis: subgroup classifications. Lancet Neurology, The, 2016, 15, 356-357.	4.9	2
33	Titin antibodies in "seronegative―myasthenia gravis — A new role for an old antigen. Journal of Neuroimmunology, 2016, 292, 108-115.	1.1	57
34	TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice. Behavioural Brain Research, 2016, 296, 15-25.	1.2	22
35	In vivo optical imaging of MMP2 immuno protein antibody: tumor uptake is associated with MMP2 activity. Scientific Reports, 2016, 6, 22198.	1.6	8
36	Combination of radiotherapy with the immunocytokine L19-IL2: Additive effect in a NK cell dependent tumour model. Radiotherapy and Oncology, 2015, 116, 438-442.	0.3	30

#	Article	IF	CITATIONS
37	Guidelines for pre-clinical assessment of the acetylcholine receptor-specific passive transfer myasthenia gravis model—Recommendations for methods and experimental designs. Experimental Neurology, 2015, 270, 3-10.	2.0	25
38	ILâ€17â€producing CD4 ⁺ T cells contribute to the loss of Bâ€cell tolerance in experimental autoimmune myasthenia gravis. European Journal of Immunology, 2015, 45, 1339-1347.	1.6	64
39	MuSK autoantibodies in myasthenia gravis detected by cell based assay — A multinational study. Journal of Neuroimmunology, 2015, 284, 10-17.	1.1	63
40	Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Experimental Neurology, 2015, 270, 29-40.	2.0	27
41	Generation of Recombinant Human IgG Monoclonal Antibodies from Immortalized Sorted B Cells. Journal of Visualized Experiments, 2015, , e52830.	0.2	5
42	Absence of <i>N</i> -Methyl- _{<scp>D</scp>} -Aspartate Receptor IgG Autoantibodies in Schizophrenia. JAMA Psychiatry, 2015, 72, 731.	6.0	58
43	Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors — Recommendations for methods and experimental designs. Experimental Neurology, 2015, 270, 18-28.	2.0	51
44	Detection of Peptide-Based Nanoparticles in Blood Plasma by ELISA. PLoS ONE, 2015, 10, e0126136.	1.1	4
45	Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content. Clinical Science, 2014, 126, 557-566.	1.8	55
46	Glycine receptor antibodies in PERM: a new channelopathy. Brain, 2014, 137, 2115-2116.	3.7	3
47	Proteasome Inhibition with Bortezomib Depletes Plasma Cells and Specific Autoantibody Production in Primary Thymic Cell Cultures from Early-Onset Myasthenia Gravis Patients. Journal of Immunology, 2014, 193, 1055-1063.	0.4	45
48	Delivery of DNA into the Central Nervous System via Electroporation. Methods in Molecular Biology, 2014, 1121, 157-163.	0.4	3
49	Clonal heterogeneity of thymic B cells from early-onset myasthenia gravis patients with antibodies against the acetylcholine receptor. Journal of Autoimmunity, 2014, 52, 101-112.	3.0	41
50	A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. Journal of Autoimmunity, 2014, 52, 139-145.	3.0	244
51	Complement Activation by Ceramide Transporter Proteins. Journal of Immunology, 2014, 192, 1154-1161.	0.4	21
52	Ex Vivo and in Vivo Administration of Fluorescent CNA35 Specifically Marks Cardiac Fibrosis. Molecular Imaging, 2014, 13, 7290.2014.00036.	0.7	5
53	MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20783-20788.	3.3	234
54	Proteomic analysis of rat tibialis anterior muscles at different stages of experimental autoimmune myasthenia gravis. Journal of Neuroimmunology, 2013, 261, 141-145.	1.1	12

#	Article	IF	CITATIONS
55	Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmunity Reviews, 2013, 12, 918-923.	2.5	143
56	Autoantigen induced clonal expansion in immortalized B cells from the peripheral blood of multiple sclerosis patients. Journal of Neuroimmunology, 2013, 261, 98-107.	1.1	6
57	Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders. Frontiers in Genetics, 2013, 4, 181.	1.1	14
58	Goodpasture Antigen-binding Protein/Ceramide Transporter Binds to Human Serum Amyloid P-Component and Is Present in Brain Amyloid Plaques. Journal of Biological Chemistry, 2012, 287, 14897-14911.	1.6	31
59	Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain, 2012, 135, 1081-1101.	3.7	180
60	Unchanged expression of the ceramide transfer protein in the acute 6-OHDA neurodegenerative model. Neuroscience Letters, 2012, 506, 39-43.	1.0	1
61	MuSK myasthenia gravis and Lambert–Eaton myasthenic syndrome in the same patient. Clinical Neurology and Neurosurgery, 2012, 114, 795-797.	0.6	10
62	Targeting plasma cells with proteasome inhibitors: possible roles in treating myasthenia gravis?. Annals of the New York Academy of Sciences, 2012, 1274, 48-59.	1.8	34
63	The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochemistry and Cell Biology, 2012, 137, 205-216.	0.8	136
64	Neuropathy-Induced Spinal GAP-43 Expression Is Not a Main Player in the Onset of Mechanical Pain Hypersensitivity. Journal of Neurotrauma, 2011, 28, 2463-2473.	1.7	16
65	Reduced thymic expression of ErbB receptors without auto-antibodies against synaptic ErbB in myasthenia gravis. Journal of Neuroimmunology, 2011, 232, 158-165.	1.1	7
66	Proteasome Inhibition with Bortezomib Depletes Plasma Cells and Autoantibodies in Experimental Autoimmune Myasthenia Gravis. Journal of Immunology, 2011, 186, 2503-2513.	0.4	115
67	Paradoxical Increase in TAG and DAG Content Parallel the Insulin Sensitizing Effect of Unilateral DGAT1 Overexpression in Rat Skeletal Muscle. PLoS ONE, 2011, 6, e14503.	1.1	39
68	The ceramide transporter and the Goodpasture antigen binding protein: one protein – one function?. Journal of Neurochemistry, 2010, 113, 1369-1386.	2.1	33
69	Low Current-driven Micro-electroporation Allows Efficient In Vivo Delivery of Nonviral DNA into the Adult Mouse Brain. Molecular Therapy, 2010, 18, 1183-1191.	3.7	31
70	A novel method for making human monoclonal antibodies. Journal of Autoimmunity, 2010, 35, 130-134.	3.0	36
71	In vivo electroporation of the central nervous system: A non-viral approach for targeted gene delivery. Progress in Neurobiology, 2010, 92, 227-244.	2.8	66
72	The auto-antigen repertoire in myasthenia gravis. Autoimmunity, 2010, 43, 380-400.	1.2	48

#	Article	IF	CITATIONS
73	Antibody effector mechanisms in myasthenia gravis—Pathogenesis at the neuromuscular junction. Autoimmunity, 2010, 43, 353-370.	1.2	101
74	Main Immunogenic Region Structure Promotes Binding of Conformation-Dependent Myasthenia Gravis Autoantibodies, Nicotinic Acetylcholine Receptor Conformation Maturation, and Agonist Sensitivity. Journal of Neuroscience, 2009, 29, 13898-13908.	1.7	93
75	Silencing rapsyn in vivo decreases acetylcholine receptors and augments sodium channels and secondary postsynaptic membrane folding. Neurobiology of Disease, 2009, 35, 14-23.	2.1	15
76	B cell characterization and reactivity analysis in multiple sclerosis. Autoimmunity Reviews, 2009, 8, 654-658.	2.5	47
77	The expression of the Goodpasture antigen-binding protein (ceramide transporter) in adult rat brain. Journal of Chemical Neuroanatomy, 2009, 38, 97-105.	1.0	9
78	The Effect of Plasma From Muscle-Specific Tyrosine Kinase Myasthenia Patients on Regenerating Endplates. American Journal of Pathology, 2009, 175, 1536-1544.	1.9	37
79	<i>Treatment of Myasthenia Gravis by Preventing Acetylcholine Receptor Modulation</i> . Annals of the New York Academy of Sciences, 2008, 1132, 174-179.	1.8	19
80	Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. Journal of Neuroimmunology, 2008, 201-202, 111-120.	1.1	17
81	Ceneration of polyclonal antibodies directed against C protein-coupled receptors using electroporation-aided DNA immunization. Journal of Pharmacological and Toxicological Methods, 2008, 58, 27-31.	0.3	11
82	Improvement ofIn VivoTransfer of Plasmid DNA in Muscle: Comparison of Electroporation versus Ultrasound. Drug Delivery, 2007, 14, 273-277.	2.5	21
83	Overexpression of Rapsyn in Rat Muscle Increases Acetylcholine Receptor Levels in Chronic Experimental Autoimmune Myasthenia Gravis. American Journal of Pathology, 2007, 170, 644-657.	1.9	33
84	Anti-Inflammatory Activity of Human IgG4 Antibodies by Dynamic Fab Arm Exchange. Science, 2007, 317, 1554-1557.	6.0	846
85	DGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content. Journal of Lipid Research, 2005, 46, 230-236.	2.0	41
86	Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain, 2005, 128, 2327-2337.	3.7	66
87	Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnology Progress, 2004, 20, 1062-1068.	1.3	161
88	Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochemical Engineering Journal, 2004, 17, 155-167.	1.8	123
89	Immunoregulation in Experimental Autoimmune Myasthenia Gravis-about T Cells, Antibodies, and Endplates. Annals of the New York Academy of Sciences, 2003, 998, 308-317.	1.8	29
90	Effect of oxygen supply on passaging, stabilising and screening of recombinant production strains in test tube cultures. FEMS Yeast Research, 2003, 4, 195-205.	1.1	41