Jingcheng Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066375/publications.pdf

Version: 2024-02-01

309 papers 8,019 citations

66234 42 h-index 98622 67 g-index

315 all docs

315 docs citations

315 times ranked

8126 citing authors

#	Article	IF	CITATIONS
1	Self-assembled structures in excess and salt-free catanionic surfactant solutions. Current Opinion in Colloid and Interface Science, 2004, 9, 279-293.	3.4	210
2	Complex Fluids of Poly(oxyethylene) Monoalkyl Ether Nonionic Surfactants. Chemical Reviews, 2010, 110, 4978-5022.	23.0	191
3	Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chemical Society Reviews, 2011, 40, 5457.	18.7	171
4	Eco-Friendly, Self-Healing Hydrogels for Adhesive and Elastic Strain Sensors, Circuit Repairing, and Flexible Electronic Devices. Macromolecules, 2019, 52, 2531-2541.	2.2	149
5	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€toâ€Phosphorescence Switching. Angewandte Chemie - International Edition, 2020, 59, 9922-9927.	7.2	138
6	Chalcogen–Chalcogen Bonding Catalysis Enables Assembly of Discrete Molecules. Journal of the American Chemical Society, 2019, 141, 9175-9179.	6.6	137
7	Poly(9â€vinylcarbazole)/silver composite nanotubes and networks formed at the air–water interface. Journal of Applied Polymer Science, 2010, 116, 252-257.	1.3	135
8	Rapid-Forming and Self-Healing Agarose-Based Hydrogels for Tissue Adhesives and Potential Wound Dressings. Biomacromolecules, 2018, 19, 980-988.	2.6	130
9	Polyphenol-Based Particles for Theranostics. Theranostics, 2019, 9, 3170-3190.	4.6	123
10	Tunable Amphiphilicity and Multifunctional Applications of Ionic-Liquid-Modified Carbon Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6919-6925.	4.0	118
11	Dual Chalcogen–Chalcogen Bonding Catalysis. Journal of the American Chemical Society, 2020, 142, 3117-3124.	6.6	114
12	Soft Vesicles in the Synthesis of Hard Materials. Accounts of Chemical Research, 2012, 45, 504-513.	7.6	109
13	Classic Lα Phases as Opposed to Vesicle Phases in Cationicâ^'Anionic Surfactant Mixtures. Journal of Physical Chemistry B, 2000, 104, 2781-2784.	1.2	108
14	Metal Ion-Directed Functional Metal–Phenolic Materials. Chemical Reviews, 2022, 122, 11432-11473.	23.0	108
15	An Onion Phase in Salt-Free Zero-Charged Catanionic Surfactant Solutions. Angewandte Chemie - International Edition, 2005, 44, 4018-4021.	7.2	100
16	Self-Patterning of Hydrophobic Materials into Highly Ordered Honeycomb Nanostructures at the Air/Water Interface. Angewandte Chemie - International Edition, 2007, 46, 3342-3345.	7.2	100
17	Vesicles from Salt-Free Cationic and Anionic Surfactant Solutions. Langmuir, 2003, 19, 10635-10640.	1.6	99
18	Photo-induced phase transition from multilamellar vesicles to wormlike micelles. Soft Matter, 2011, 7, 10713.	1.2	98

#	Article	IF	Citations
19	lonic Liquid as Reaction Medium for Synthesis of Hierarchically Structured One-Dimensional MoO ₂ for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 7217-7223.	4.0	91
20	Self-Assembled Structure in Room-Temperature Ionic Liquids. Chemistry - A European Journal, 2005, 11, 3936-3940.	1.7	70
21	Evaporationâ€Induced Ordered Honeycomb Structures of Gold Nanoparticles at the Air/Water Interface. Chemistry - A European Journal, 2010, 16, 655-660.	1.7	70
22	Oxygen vacancy-engineered Fe ₂ O ₃ nanocubes <i>via</i> a task-specific ionic liquid for electrocatalytic N ₂ fixation. Chemical Communications, 2019, 55, 7370-7373.	2.2	67
23	Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis. ACS Applied Bio Materials, 2020, 3, 1258-1266.	2.3	66
24	Highly effective emulsification/demulsification with a CO 2 -switchable superamphiphile. Journal of Colloid and Interface Science, 2016, 480, 198-204.	5.0	65
25	Polyelectrolyteâ€grafted carbon nanotubes: Synthesis, reversible phaseâ€transition behavior, and tribological properties as lubricant additives. Journal of Polymer Science Part A, 2008, 46, 7225-7237.	2.5	63
26	Multilayer vesicles and vesicle clusters formed by the fullerene-based surfactant C60(CH3)5K. Journal of Colloid and Interface Science, 2004, 275, 632-641.	5.0	61
27	Relationship between dispersion state and reinforcement effect of graphene oxide in microcrystalline cellulose–graphene oxide composite films. Journal of Materials Chemistry, 2012, 22, 12859.	6.7	57
28	Microgels in biomaterials and nanomedicines. Advances in Colloid and Interface Science, 2019, 266, 1-20.	7.0	56
29	Polypeptide-Based Theranostics with Tumor-Microenvironment-Activatable Cascade Reaction for Chemo-ferroptosis Combination Therapy. ACS Applied Materials & Interfaces, 2020, 12, 20271-20280.	4.0	53
30	Controllable hierarchical self-assembly of porphyrin-derived supra-amphiphiles. Nature Communications, 2019, 10, 1399.	5.8	51
31	Phosphonium-Based Ionic Liquid: A New Phosphorus Source toward Microwave-Driven Synthesis of Nickel Phosphide for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1468-1477.	3.2	50
32	Reversible phase transition between salt-free catanionic vesicles and high-salinity catanionic vesicles. Soft Matter, 2007, 3, 1407.	1.2	49
33	A gel state from densely packed multilamellar vesicles in the crystalline state. Soft Matter, 2010, 6, 4350.	1.2	49
34	Transfection Efficiency of DNA Enhanced by Association with Salt-Free Catanionic Vesicles. Biomacromolecules, 2013, 14, 2781-2789.	2.6	49
35	Vanadiumâ€Doped WS ₂ Nanosheets Grown on Carbon Cloth as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 1438-1446.	1.7	49
36	Enzyme-Regulated Healable Polymeric Hydrogels. ACS Central Science, 2020, 6, 1507-1522.	5.3	48

#	Article	IF	Citations
37	Controlling the Capture and Release of DNA with a Dual-Responsive Cationic Surfactant. ACS Applied Materials & Dual-Responsive Cationic Surfactant. ACS App	4.0	46
38	Self-assembly of onion-like vesicles induced by charge and rheological properties in anionic–nonionic surfactant solutions. Soft Matter, 2012, 8, 7812.	1.2	45
39	Peptide-assembled hydrogels for pH-controllable drug release. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110567.	2.5	45
40	In Situ Vesicle Formation by a Kinetic Reaction in Aqueous Mixtures of Single-Tailed Catanionic Surfactants. Journal of Physical Chemistry B, 2004, 108, 5105-5112.	1.2	44
41	Gel phase originating from molecular quasi-crystallization and nanofiber growth of sodium laurate–water system. Soft Matter, 2008, 4, 1639.	1.2	44
42	Magnetic Fullerene-DNA/Hyaluronic Acid Nanovehicles with Magnetism/Reduction Dual-Responsive Triggered Release. Biomacromolecules, 2017, 18, 1029-1038.	2.6	44
43	Advancing Metal–Phenolic Networks for Visual Information Storage. ACS Applied Materials & amp; Interfaces, 2019, 11, 29305-29311.	4.0	43
44	Self-Assembled Peptide Nanofibers Encapsulated with Superfine Silver Nanoparticles via Ag ⁺ Coordination. Langmuir, 2015, 31, 8599-8605.	1.6	42
45	Bioinspired Self-Healing of Kinetically Inert Hydrogels Mediated by Chemical Nutrient Supply. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6471-6478.	4.0	42
46	Supramolecular Chirality from Hierarchical Self-Assembly of Atomically Precise Silver Nanoclusters Induced by Secondary Metal Coordination. ACS Nano, 2021, 15, 15910-15919.	7.3	42
47	Principles of Cationâ'ï€ Interactions for Engineering Mussel-Inspired Functional Materials. Accounts of Chemical Research, 2022, 55, 1171-1182.	7.6	42
48	Photoresponsive chiral nanotubes of achiral amphiphilic azobenzene. Soft Matter, 2012, 8, 11492.	1.2	41
49	Near-Infrared-Light-Responsive Magnetic DNA Microgels for Photon- and Magneto-Manipulated Cancer Therapy. ACS Applied Materials & DNA Microgels for Photon- and Magneto-Manipulated Cancer	4.0	40
50	Recent progress of magnetic surfactants: Self-assembly, properties and functions. Current Opinion in Colloid and Interface Science, 2018, 35, 81-90.	3.4	40
51	Self-assembled structures of amphiphiles regulated via implanting external stimuli. RSC Advances, 2014, 4, 41864-41875.	1.7	39
52	Functional materials from the covalent modification of reduced graphene oxide and \hat{l}^2 -cyclodextrin as a drug delivery carrier. New Journal of Chemistry, 2014, 38, 140-145.	1.4	38
53	Compaction and decompaction of DNA dominated by the competition between counterions and DNA associating with cationic aggregates. Colloids and Surfaces B: Biointerfaces, 2015, 134, 105-112.	2.5	38
54	Self-Assembly Fibrillar Network Gels of Simple Surfactants in Organic Solvents. Langmuir, 2011, 27, 1713-1717.	1.6	37

#	Article	IF	CITATIONS
55	Temperature regulated supramolecular structures via modifying the balance of multiple non-covalent interactions. Soft Matter, 2013, 9, 4209.	1.2	37
56	Iron–naphthalenedicarboxylic acid gels and their high efficiency in removing arsenic(⟨scp⟩v⟨ scp⟩). Chemical Communications, 2016, 52, 6993-6996.	2.2	37
57	Peroxidase mimetic activity of Fe3O4 nanoparticle prepared based on magnetic hydrogels for hydrogen peroxide and glucose detection. Journal of Colloid and Interface Science, 2017, 506, 46-57.	5.0	37
58	Antiswelling and Durable Adhesion Biodegradable Hydrogels for Tissue Repairs and Strain Sensors. Langmuir, 2020, 36, 10448-10459.	1.6	37
59	Phase Transition in Salt-Free Catanionic Surfactant Mixtures Induced by Temperature. Langmuir, 2010, 26, 34-40.	1.6	36
60	Self-Assembly and Rheological Properties of a Pseudogemini Surfactant Formed in a Salt-Free Catanionic Surfactant Mixture in Water. Langmuir, 2015, 31, 11209-11219.	1.6	36
61	Ca2+– and Ba2+–Ligand Coordinated Unilamellar, Multilamellar, and Oligovesicular Vesicles. Chemistry - A European Journal, 2007, 13, 496-501.	1.7	35
62	Phase Behaviors and Self-Assembly Properties of Two Catanionic Surfactant Systems: C8F17COOH/TTAOH/H2O and C8H17COOH/TTAOH/H2O. Journal of Physical Chemistry B, 2010, 114, 13128-13135.	1.2	35
63	Ionothermal synthesis of bismuth sulfide nanostructures and their electrochemical hydrogen storage behavior. New Journal of Chemistry, 2010, 34, 1930.	1.4	35
64	Synthesis, optical and electrochemical properties of ZnO nanorod hybrids loaded with high-density gold nanoparticles. CrystEngComm, 2012, 14, 5158.	1.3	35
65	Multiresponsive Viscoelastic Vesicle Gels of Nonionic C ₁₂ EO ₄ and Anionic AzoNa. Chemistry - A European Journal, 2013, 19, 8253-8260.	1.7	35
66	Hydrogels Triggered by Metal Ions as Precursors of Network CuS for DNA Detection. Chemistry - A European Journal, 2015, 21, 12194-12201.	1.7	35
67	Influence of Polyoxometalate Protecting Ligands on Catalytic Aerobic Oxidation at the Surfaces of Gold Nanoparticles in Water. Inorganic Chemistry, 2017, 56, 2400-2408.	1.9	35
68	Hydrogels formed by enantioselective self-assembly of histidine-derived amphiphiles with tartaric acid. Soft Matter, 2014, 10, 4855.	1.2	34
69	Fluorescent Hydrogels with Tunable Nanostructure and Viscoelasticity for Formaldehyde Removal. ACS Applied Materials & Diterfaces, 2014, 6, 18319-18328.	4.0	33
70	Removal mechanisms and plant species selection by bioaccumulative factors in surface flow constructed wetlands (CWs): In the case of triclosan. Science of the Total Environment, 2016, 547, 9-16.	3.9	32
71	Ferrofluids of Thermotropic Liquid Crystals by DNA–Lipid Hybrids. Journal of Physical Chemistry B, 2017, 121, 420-425.	1.2	32
72	Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9832-9839.	3.3	32

#	Article	IF	Citations
73	Poly(ethylene glycol)-Mediated Assembly of Vaccine Particles to Improve Stability and Immunogenicity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13978-13989.	4.0	32
74	Versatile Selfâ€Assembly and Biosensing Applications of DNA and Carbon Quantum Dots Coordinated Cerium Ions. Chemistry - A European Journal, 2017, 23, 10413-10422.	1.7	32
75	Porphyrin-Based Honeycomb Films and Their Antibacterial Activity. Langmuir, 2014, 30, 6419-6426.	1.6	31
76	Poly(ethylene glycol)-mediated mineralization of metal–organic frameworks. Chemical Communications, 2020, 56, 11078-11081.	2.2	31
77	Influence of Counterions on Lauric Acid Vesicles and Theoretical Consideration of Vesicle Stability. Journal of Physical Chemistry B, 2013, 117, 242-251.	1.2	30
78	Transient Healability of Metallosupramolecular Polymer Networks Mediated by Kinetic Control of Competing Chemical Reactions. Macromolecules, 2020, 53, 2856-2863.	2,2	30
79	Formation and Degradation Tracking of a Composite Hydrogel Based on UCNPs@PDA. Macromolecules, 2020, 53, 2430-2440.	2.2	30
80	Amphiphilic short peptide modulated wormlike micelle formation with pH and metal ion dual-responsive properties. RSC Advances, 2015, 5, 95604-95612.	1.7	29
81	Magnetic controlling of migration of DNA and proteins using one-step modified gold nanoparticles. Chemical Communications, 2015, 51, 9257-9260.	2.2	29
82	Ordered DNA-Surfactant Hybrid Nanospheres Triggered by Magnetic Cationic Surfactants for Photonand Magneto-Manipulated Drug Delivery and Release. Biomacromolecules, 2015, 16, 4004-4012.	2.6	29
83	Dual-Stimuli-Responsive Polypeptide Nanoparticles for Photothermal and Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 561-569.	2.3	29
84	Stimuliâ€Responsive Fluorescent Nanoswitches: Solventâ€Induced Emission Enhancement of Copper Nanoclusters. Chemistry - A European Journal, 2020, 26, 3545-3554.	1.7	28
85	Well-defined self-assembling supramolecular structures in water containing a small amount of C60. Chemical Communications, 2004, , 602.	2.2	27
86	Phase Behavior and Rheological Properties of Salt-Free Catanionic Surfactant Mixtures in the Presence of Bile Acids. Journal of Physical Chemistry B, 2010, 114, 9795-9804.	1.2	27
87	Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids. Langmuir, 2016, 32, 1502-1509.	1.6	27
88	Photoluminescent and pH-responsive supramolecular structures from co-assembly of carbon quantum dots and zwitterionic surfactant micelles. Journal of Materials Chemistry B, 2018, 6, 7021-7032.	2.9	27
89	Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives. Journal of Polymer Science Part A, 2008, 46, 3014-3023.	2.5	26
90	Reversible phase transition from vesicles to lamellar network structures triggered by chain melting. Soft Matter, 2008, 4, 805.	1.2	26

#	Article	IF	CITATIONS
91	Surfactantion-selective electrodes: A promising approach to the study of the aggregation of ionic surfactants in solution. Soft Matter, 2012, 8, 896-909.	1.2	26
92	A phase-change gel based pressure sensor with tunable sensitivity for artificial tactile feedback systems. Journal of Materials Chemistry A, 2021, 9, 19914-19921.	5.2	26
93	Silica Capsules Templated from Metal–Organic Frameworks for Enzyme Immobilization and Catalysis. Langmuir, 2021, 37, 3166-3172.	1.6	26
94	A Salt-Free Zero-Charged Aqueous Onion-Phase Enhances the Solubility of Fullerene C60in Water. Journal of Physical Chemistry B, 2006, 110, 68-74.	1.2	25
95	Self-Assembled Switching Gels with Multiresponsivity and Chirality. Langmuir, 2015, 31, 2288-2296.	1.6	25
96	Colloidal Wormlike Micelles with Highly Ferromagnetic Properties. Langmuir, 2015, 31, 11243-11248.	1.6	25
97	Two Gelation Mechanisms of Deoxycholate with Inorganic Additives: Hydrogen Bonding and Electrostatic Interactions. Journal of Physical Chemistry B, 2016, 120, 6812-6818.	1.2	25
98	Hydrogels Based on Ag ⁺ â€Modulated Assembly of 5′â€Adenosine Monophosphate for Enriching Biomolecules. Chemistry - A European Journal, 2017, 23, 15721-15728.	1.7	25
99	Multiple Cross-Linking-Dominated Metal–Ligand Coordinated Hydrogels with Tunable Strength and Thermosensitivity. ACS Applied Polymer Materials, 2019, 1, 2370-2378.	2.0	25
100	Reactive Ionic Liquid Enables the Construction of 3D Rh Particles with Nanowire Subunits for Electrocatalytic Nitrogen Reduction. Chemistry - an Asian Journal, 2020, 15, 1081-1087.	1.7	25
101	Nanoemulsion fluorescent inks for anti-counterfeiting encryption with dual-mode, full-color, and long-term stability. Chemical Communications, 2021, 57, 4894-4897.	2.2	25
102	Regeneration of porous Fe3O4 nanosheets from deep eutectic solvent for high-performance electrocatalytic nitrogen reduction. Journal of Colloid and Interface Science, 2021, 602, 64-72.	5.0	25
103	Superhydrophobic self-assembled monolayers of long-chain fluorinated imidazolium ionic liquids. RSC Advances, 2012, 2, 5141.	1.7	24
104	Loading capacity and interaction of DNA binding on catanionic vesicles with different cationic surfactants. Soft Matter, 2014, 10, 9143-9152.	1.2	24
105	Ionogels of Sugar Surfactant in Ethylammonium Nitrate: Phase Transition from Closely Packed Bilayers to Right-Handed Twisted Ribbons. Journal of Physical Chemistry B, 2015, 119, 13321-13329.	1.2	24
106	2,6-Diaminopyridine-imprinted polymer and its potency to hair-dye assay using graphene/ionic liquid electrochemical sensor. Biosensors and Bioelectronics, 2015, 64, 277-284.	5. 3	24
107	Tunable assembly and disassembly of responsive supramolecular polymer brushes. Polymer Chemistry, 2017, 8, 2764-2772.	1.9	24
108	GMP-quadruplex-based hydrogels stabilized by lanthanide ions. Science China Chemistry, 2018, 61, 604-612.	4.2	24

#	Article	IF	Citations
109	(Salen)Mn(iii)-catalyzed chemoselective acylazidation of olefins. Chemical Science, 2018, 9, 6085-6090.	3.7	23
110	Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3343-3351.	2.5	23
111	Environmentally stable, photochromic and thermotropic organohydrogels for low cost on-demand optical devices. Journal of Colloid and Interface Science, 2020, 578, 315-325.	5.0	23
112	Metal-Organic Gels of Catechol-Based Ligands with Ni(II) Acetate for Dye Adsorption. Langmuir, 2018, 34, 9435-9441.	1.6	22
113	Sono-Polymerization of Poly(ethylene glycol)-Based Nanoparticles for Targeted Drug Delivery. ACS Macro Letters, 2019, 8, 1285-1290.	2.3	22
114	Fullerene-Directed Synthesis of Flowerlike Cu ₃ (PO ₄) ₂ Crystals for Efficient Photocatalytic Degradation of Dyes. Langmuir, 2019, 35, 8806-8815.	1.6	22
115	All-In-One Deep Eutectic Solvent toward Cobalt-Based Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8964-8971.	3.2	22
116	AIE + ESIPT activity-based NIR Cu ²⁺ sensor with dye participated binding strategy. Chemical Communications, 2021, 57, 7685-7688.	2.2	22
117	Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Advances in Colloid and Interface Science, 2021, 292, 102408.	7.0	22
118	Self-assembly of fullerene C ₆₀ -based amphiphiles in solutions. Chemical Society Reviews, 2022, 51, 3226-3242.	18.7	22
119	Aptamer-functionalized DNA microgels: a strategy towards selective anticancer therapeutic systems. Journal of Materials Chemistry B, 2016, 4, 5446-5454.	2.9	21
120	Metallosurfactant lonogels in Imidazolium and Protic Ionic Liquids as Precursors To Synthesize Nanoceria as Catalase Mimetics for the Catalytic Decomposition of H ₂ O ₂ . Chemistry - A European Journal, 2016, 22, 17857-17865.	1.7	21
121	Surfactant-Modified Ultrafine Gold Nanoparticles with Magnetic Responsiveness for Reversible Convergence and Release of Biomacromolecules. Langmuir, 2017, 33, 3047-3055.	1.6	21
122	Aggregationâ€Induced Emission of Eu ^{III} Complexes Balanced with Bulky and Amphiphilic Imidazolium Cations in Ethanol/Water Binary Mixtures. Chemistry - A European Journal, 2018, 24, 15912-15920.	1.7	21
123	Aggregation Behavior and Antioxidant Properties of Amphiphilic Fullerene C ₆₀ Derivatives Cofunctionalized with Cationic and Nonionic Hydrophilic Groups. Langmuir, 2019, 35, 6939-6949.	1.6	21
124	Phase Behavior of Salt-Free Catanionic Surfactant Aqueous Solutions with Fullerene C60 Solubilized. Journal of Physical Chemistry B, 2007, 111, 7719-7724.	1.2	20
125	Sideâ€chain polypseudorotaxanes by threading cucurbit[7]uril onto polyâ€xi>Nà€ <i>n</i> à6€si>nà6€si à6§si à6§si à6§si à6§si à6§si à6§si 	nt b æsis,	20
126	Multiple-stimulus-responsive hydrogels of cationic surfactants and azoic salt mixtures. Colloid and Polymer Science, 2013, 291, 2935-2946.	1.0	20

#	Article	IF	Citations
127	Ionogels of a Sugar Surfactant in Ionic Liquids. Chemistry - an Asian Journal, 2016, 11, 722-729.	1.7	20
128	Robust onionlike structures with magnetic and photodynamic properties formed by a fullerene C ₆₀ –POM hybrid. Chemical Communications, 2016, 52, 12171-12174.	2.2	20
129	Controllable 1D and 2D Cobalt Oxide and Cobalt Selenide Nanostructures as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 2700-2707.	1.7	20
130	Directionally electrodeposited gold nanoparticles into honeycomb macropores and their surface-enhanced Raman scattering. New Journal of Chemistry, 2010, 34, 1059.	1.4	19
131	Hydratedâ€Metalâ€Halideâ€Based Deepâ€Eutecticâ€Solventâ€Mediated NiFe Layered Double Hydroxide: An Exce Electrocatalyst for Urea Electrolysis and Water Splitting. Chemistry - an Asian Journal, 2019, 14, 2995-3002.	llent 1.7	19
132	Guanosine-based thermotropic liquid crystals with tunable phase structures and ion-responsive properties. Journal of Colloid and Interface Science, 2019, 553, 269-279.	5.0	19
133	Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy. New Journal of Chemistry, 2019, 43, 4908-4918.	1.4	19
134	A new application of Krafft point concept: an ultraviolet-shielded surfactant switchable window. Chemical Communications, 2020, 56, 5315-5318.	2.2	19
135	Hot Melt Super Glue: Multiâ€Recyclable Polyphenolâ€Based Supramolecular Adhesives. Macromolecular Rapid Communications, 2022, 43, e2100830.	2.0	19
136	Oxidation stability enhanced MXene-based porous materials derived from water-in-ionic liquid Pickering emulsions for wearable piezoresistive sensor and oil/water separation applications. Journal of Colloid and Interface Science, 2022, 618, 311-321.	5.0	19
137	Phosphorus vacancy-engineered Ce-doped CoP nanosheets for the electrocatalytic oxidation of 5-hydroxymethylfurfural. Chemical Communications, 2022, 58, 7817-7820.	2.2	19
138	Microemulsion copolymerization of styrene and acrylonitrile withn-butanol as the cosurfactant. Journal of Polymer Science Part A, 2005, 43, 203-216.	2.5	18
139	Theoretical investigations on the weak nonbonded CS···CH ₂ interactions: Chalcogenâ€bonded complexes with singlet carbene as an electron donor. International Journal of Quantum Chemistry, 2011, 111, 3881-3887.	1.0	18
140	Self-assembly and accurate preparation of Au nanoparticles in the aqueous solution of a peptide A6D and a zwitterionic C14DMAO. Soft Matter, 2013, 9, 5572.	1.2	18
141	Assembly of graphene nanocomposites into honeycomb-structured macroporous films with enhanced hydrophobicity. New Journal of Chemistry, 2013, 37, 1307.	1.4	18
142	Antifouling and pH-Responsive Poly(Carboxybetaine)-Based Nanoparticles for Tumor Cell Targeting. Frontiers in Chemistry, 2019, 7, 770.	1.8	18
143	Magnetic networks of carbon quantum dots and Ag particles. Journal of Colloid and Interface Science, 2019, 539, 203-213.	5.0	18
144	Interfacial Assembly of Metal–Phenolic Networks for Hair Dyeing. ACS Applied Materials & Dyeing. ACS Applied Materials & Interfaces, 2020, 12, 29826-29834.	4.0	18

#	Article	IF	Citations
145	Sonoâ€Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angewandte Chemie - International Edition, 2021, 60, 21529-21535.	7.2	18
146	Cucurbit[7]uril moving on side chains of polypseudorotaxanes: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2011, 49, 2138-2146.	2.5	17
147	Transition of Phase Structures in Mixtures of Lysine and Fatty Acids. Journal of Physical Chemistry B, 2014, 118, 14843-14851.	1.2	17
148	Self-Organization and Vesicle Formation of Amphiphilic Fulleromonodendrons Bearing Oligo(poly(ethylene oxide)) Chains. Langmuir, 2016, 32, 2338-2347.	1.6	17
149	Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution. Journal of Environmental Sciences, 2018, 66, 286-294.	3.2	17
150	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	1.7	17
151	Monodispersity of Poly(ethylene glycol) Matters for Low-Fouling Coatings. ACS Macro Letters, 2020, 9, 1478-1482.	2.3	17
152	Naphthaleneâ€Functionalized, Photoluminescent Room Temperature Ionic Liquids Bearing Small Counterions. Chemistry - A European Journal, 2016, 22, 6286-6293.	1.7	16
153	Ultrafine Au and Ag Nanoparticles Synthesized from Selfâ€Assembled Peptide Fibers and Their Excellent Catalytic Activity. ChemPhysChem, 2016, 17, 2157-2163.	1.0	16
154	A green synthesis of "naked―Pt and PtPd catalysts for highly efficient methanol electrooxidation. RSC Advances, 2016, 6, 56083-56090.	1.7	16
155	Ionogels of pseudogemini supra-amphiphiles in ethylammonium nitrate: Structures and properties. Journal of Colloid and Interface Science, 2017, 491, 64-71.	5.0	16
156	Chitosan gel incorporated peptide-modified AuNPs for sustained drug delivery with smart pH responsiveness. Journal of Materials Chemistry B, 2017, 5, 1174-1181.	2.9	16
157	Surfactant-regulated fabrication of gold nanostars in magnetic core/shell hybrid nanoparticles for controlled release of drug. Journal of Colloid and Interface Science, 2018, 529, 547-555.	5.0	16
158	lonic-surfactants-based thermotropic liquid crystals. Physical Chemistry Chemical Physics, 2019, 21, 15256-15281.	1.3	16
159	Vesicle transition of catanionic redox-switchable surfactants controlled by DNA with different chain lengths. Journal of Colloid and Interface Science, 2019, 549, 89-97.	5.0	16
160	Solubility of NaBr, NaCl, and KBr in Surfactant Aqueous Solutions. Journal of Chemical & Samp; Engineering Data, 2011, 56, 951-955.	1.0	15
161	Stable ZnO/ionic liquid hybrid materials: novel dual-responsive superhydrophobic layers to light and anions. Science China Chemistry, 2014, 57, 1002-1009.	4.2	15
162	Unique self-assembly behavior of amphiphilic block copolymers at liquid/liquid interfaces. RSC Advances, 2015, 5, 4334-4342.	1.7	15

#	Article	lF	Citations
163	Magnetic Gemini Surfactants. Langmuir, 2019, 35, 9538-9545.	1.6	15
164	Cubic Liquid Crystals of Polyoxometalate-Based Ionic Liquids. Langmuir, 2020, 36, 3471-3481.	1.6	15
165	Application of metal chalcogenide-based anodic electrocatalyst toward substituting oxygen evolution reaction in water splitting. Current Opinion in Electrochemistry, 2022, 33, 100963.	2.5	15
166	Mn-Doped Bi ₂ O ₃ Nanosheets from a Deep Eutectic Solvent toward Enhanced Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 6766-6774.	3.2	15
167	Vesicles prepared by \hat{l}^2 -cyclodextrins Inclusion complexes based on switching supramolecular interaction models induced by mixed solvents. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 277-285.	1.6	14
168	Reduced graphene oxides by microwave-assisted ionothermal treatment. New Journal of Chemistry, 2012, 36, 1684.	1.4	14
169	Assembly of Polyoxometalate-Based Composite Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 301-306.	1.9	14
170	Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method. Nanoscale Research Letters, 2015, 10, 382.	3.1	14
171	Hydrogels of Superlong Helices to Synthesize Hybrid Ag-Helical Nanomaterials. Langmuir, 2016, 32, 12100-12109.	1.6	14
172	Nanocapsules of Magnetic Au Self-Assembly for DNA Migration and Secondary Self-Assembly. ACS Applied Materials & Dr. Samp; Interfaces, 2018, 10, 5348-5357.	4.0	14
173	Plasmonic microgels of Au nanorods: Self-assembly and applications in chemophotothermo-synergistic cancer therapy. Journal of Colloid and Interface Science, 2019, 536, 728-736.	5.0	14
174	Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 6866-6876.	2.9	14
175	Multi-functional rhodamine-based chitosan hydrogels as colorimetric Hg2+ adsorbents and pH-triggered biosensors. Journal of Colloid and Interface Science, 2021, 604, 469-479.	5.0	14
176	Engineering an Fe ₂ O ₃ /FeS hybrid catalyst from a deep eutectic solvent for highly efficient electrocatalytic N ₂ fixation. Chemical Communications, 2021, 57, 6688-6691.	2.2	14
177	A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution reaction. Nanotechnology, 2020, 31, 505402.	1.3	14
178	Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. Chemical Engineering Journal, 2022, 446, 137328.	6.6	14
179	Dynamic insights into formation of honeycomb structures induced by breath figures. RSC Advances, 2011, 1, 1187.	1.7	13
180	Sponge Phase Producing Porous CeO ₂ for Catalytic Oxidation of CO. Chemistry - A European Journal, 2014, 20, 9063-9072.	1.7	13

#	Article	IF	Citations
181	Ionic liquid-assisted synthesis of morphology-controlled TiO2 particles with efficient photocatalytic activity. RSC Advances, 2015, 5, 81108-81114.	1.7	13
182	Thermo-reversible capture and release of DNA by zwitterionic surfactants. Soft Matter, 2016, 12, 7495-7504.	1.2	13
183	Self-patterning porous films of giant vesicles of {Mo 72 Fe 30 } (DODMA) 3 complexes as frameworks. Advances in Colloid and Interface Science, 2016, 235, 14-22.	7.0	13
184	Zero-charged catanionic lamellar liquid crystals doped with fullerene C ₆₀ for potential applications in tribology. Soft Matter, 2017, 13, 6250-6258.	1.2	13
185	Synthesis of organic-inorganic hybrid compounds and their self-assembled behavior in different solvents. Journal of Colloid and Interface Science, 2018, 519, 81-87.	5.0	13
186	Carbon nanotubes modified by a paramagnetic cationic surfactant for migration of DNA and proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 201-208.	2.3	13
187	Polypeptide Nanoparticles with pH-Sheddable PEGylation for Improved Drug Delivery. Langmuir, 2020, 36, 13656-13662.	1.6	13
188	Deep Eutectic Solventâ€Mediated Construction of Oxygen Vacancyâ€Rich Feâ€Based Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000038.	2.7	13
189	DNA thermotropic liquid crystals controlled by positively charged catanionic bilayer vesicles. Chemical Communications, 2020, 56, 3484-3487.	2.2	13
190	Photoluminescent, Ferromagnetic, and Hydrophobic Sponges for Oil–Water Separation. ACS Omega, 2020, 5, 15077-15082.	1.6	13
191	Emulsion-Based Organohydrogels with Switchable Wettability and Underwater Adhesion toward Durable and Ecofriendly Marine Antifouling Coatings. ACS Applied Polymer Materials, 2021, 3, 3060-3070.	2.0	13
192	Facile Synthesis of Water-Soluble Rhodamine-Based Polymeric Chemosensors via Schiff Base Reaction for Fe3+ Detection and Living Cell Imaging. Frontiers in Chemistry, 2022, 10, 845627.	1.8	13
193	Nonequilibrium regulation of interfacial chemistry for transient macroscopic supramolecular assembly. Journal of Colloid and Interface Science, 2022, 623, 674-684.	5.0	13
194	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 28, 213-221.	1.6	12
195	A bile acid-induced aggregation transition and rheological properties in its mixtures with alkyltrimethylammonium hydroxide. Soft Matter, 2011, 7, 8952.	1.2	12
196	Lysine-based chiral vesicles. Journal of Colloid and Interface Science, 2014, 431, 233-240.	5.0	12
197	Bilayers and wormlike micelles at high pH in fatty acid soap systems. Journal of Colloid and Interface Science, 2016, 465, 304-310.	5.0	12
198	Monitoring the different micelle species and the slow kinetics of tetraethylammonium perfluorooctane-sulfonate by 19F NMR spectroscopy. Advances in Colloid and Interface Science, 2017, 246, 153-164.	7.0	12

#	Article	IF	Citations
199	Self-Assembled Magnetic Viruslike Particles for Encapsulation and Delivery of Deoxyribonucleic Acid. Langmuir, 2018, 34, 7171-7179.	1.6	12
200	Ultrasound expands the versatility of polydopamine coatings. Ultrasonics Sonochemistry, 2021, 74, 105571.	3.8	12
201	Encapsulation of Enzymes in Metal–Phenolic Network Capsules for the Trigger of Intracellular Cascade Reactions. Langmuir, 2021, 37, 11292-11300.	1.6	12
202	¹³³ Cs NMR and Molecular Dynamics Simulation on Bilayers of Cs ⁺ Ion Binding to Aggregates of Fatty Acid Soap at High pH. Langmuir, 2014, 30, 11567-11573.	1.6	11
203	Dual-tuning multidimensional superstructures based on a T-shaped molecule: vesicle, helix, membrane and nanofiber-constructed gel. RSC Advances, 2015, 5, 1969-1978.	1.7	11
204	Self-Assembly of Magnetic Bacillus-Shaped Bilayer Vesicles in Catanionic Surfactant Solutions. Langmuir, 2016, 32, 10226-10234.	1.6	11
205	Eu ³⁺ -Controlled Fluorescent Bilayer Vesicles. Langmuir, 2019, 35, 4125-4132.	1.6	11
206	Self-Assembly of Amphiphilic Copper Nanoclusters Driven by Cationic Surfactants. Langmuir, 2021, 37, 6613-6622.	1.6	11
207	G-quadruplex-based ionogels with controllable chirality for circularly polarized luminescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127411.	2.3	11
208	Hostâ€Fueled Transient Supramolecular Hydrogels. ChemSystemsChem, 2022, 4, .	1.1	11
209	Multilayer-Stabilized Water-in-Water Emulsions. Langmuir, 2022, 38, 4713-4721.	1.6	11
210	Phase behaviour and microstructures of microemulsions (I). Science in China Series B: Chemistry, 1997, 40, 225-235.	0.8	10
211	Interconvertible Selfâ€Assembly and Rheological Properties of Planar Bilayers and Vesicle Gels in Anionic/Nonionic (CF/CH) Surfactant Solutions. Chemistry - an Asian Journal, 2013, 8, 1863-1872.	1.7	10
212	Photoluminescent Honeycomb Structures from Polyoxometalates and an Imidazoliumâ€Based Ionic Liquid Bearing a Ï€â€Conjugated Moiety and a Branched Aliphatic Chain. Chemistry - A European Journal, 2017, 23, 7278-7286.	1.7	10
213	Dual pH-Responsive Polymer Nanogels with a Core–Shell Structure for Improved Cell Association. Langmuir, 2019, 35, 16869-16875.	1.6	10
214	Co-assemblies of polyoxometalate {Mo72Fe30}/double-tailed magnetic-surfactant for magnetic-driven anchorage and enrichment of protein. Journal of Colloid and Interface Science, 2019, 536, 88-97.	5.0	10
215	Progress in nuclear magnetic resonance studies of surfactant systems. Current Opinion in Colloid and Interface Science, 2020, 45, 14-27.	3.4	10
216	Phenylalanine-based ionic liquid crystals with water-induced phase transition behaviors. Journal of Molecular Liquids, 2020, 301, 112399.	2.3	10

#	Article	IF	Citations
217	Vaccine Nanoparticles Derived from Mung Beans for Cancer Immunotherapy. Chemistry of Materials, 2021, 33, 4057-4066.	3.2	10
218	New focus of the cloud point/Krafft point of nonionic/cationic surfactants as thermochromic materials for smart windows. Chemical Communications, 2022, 58, 2814-2817.	2.2	10
219	Transient Chemical Activation of Covalent Bonds for Healing of Kinetically Stable and Multifunctional Organohydrogels. CCS Chemistry, 2023, 5, 510-523.	4.6	10
220	NMR and ESR Studies on the Microenvironmental Properties of Sodium Perfluorooctanoate and Cetyltrimethylammonium Bromide Mixed Micellar Solutions. Journal of Dispersion Science and Technology, 1997, 18, 379-388.	1.3	9
221	Microemulsion polymerization of acrylamide and styrene: Effect of the structures of reaction media. Journal of Polymer Science Part A, 2001, 39, 3320-3334.	2.5	9
222	A gel–sol transition phenomenon of oxidation multi-walled carbon nanotubes–glycerol nanofluids induced by polyvinyl alcohol. New Journal of Chemistry, 2012, 36, 1273.	1.4	9
223	Properties and ionic self-assembled structures from mixture of a bola-type strong alkali dication and a branched phosphoric acid. Journal of Colloid and Interface Science, 2016, 472, 157-166.	5.0	9
224	Study of Ionic Liquid Microemulsions: Ethylammonium Nitrate/TritonX-100/Cyclohexane. Tenside, Surfactants, Detergents, 2017, 54, 214-219.	0.5	9
225	Peptide-based hydrogels with tunable nanostructures for the controlled release of dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 57-64.	2.3	9
226	G-Quadruplex based hydrogels stabilized by a cationic polymer as an efficient adsorbent of picric acid. New Journal of Chemistry, 2019, 43, 18331-18338.	1.4	9
227	Ordered porous films of single-walled carbon nanotubes using an ionic exchange reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 207-217.	2.3	9
228	Direct Use of Unprotected Aliphatic Amines to Generate N-Heterocycles via β-C–H Malonylation with lodonium Ylide. Organic Letters, 2020, 22, 230-233.	2.4	9
229	A new approach to construct and modulate G-quadruplex by cationic surfactant. Journal of Colloid and Interface Science, 2020, 578, 338-345.	5.0	9
230	Reinforcement of the two-stage leaching of laterite ores using surfactants. Frontiers of Chemical Science and Engineering, 2021, 15, 562-570.	2.3	9
231	Amoeba-inspired reengineering of polymer networks. Green Chemistry, 2021, 23, 2496-2506.	4.6	9
232	Effect of Elasticity of Silica Capsules on Cellular Uptake. Langmuir, 2021, 37, 11688-11694.	1.6	9
233	Photovoltaic Energy Conversion and Storage of Micro-Supercapacitors Based on Emulsion Self-Assembly of Upconverting Nanoparticles. ACS Central Science, 2021, 7, 1611-1621.	5.3	9
234	Ionic liquid crystals based on amino acids and gemini surfactants: tunable phase structure, circularly polarized luminescence and emission color. Journal of Materials Chemistry C, 2022, 10, 1645-1652.	2.7	9

#	Article	IF	CITATIONS
235	Self-reporting of damage in underwater hierarchical ionic skins <i>via</i> cascade reaction-regulated chemiluminescence. Materials Horizons, 2022, 9, 2128-2137.	6.4	9
236	Dual-Driven Mechanically and Tribologically Adaptive Hydrogels Solely Constituted of Graphene Oxide and Water. Nano Letters, 2022, 22, 6004-6009.	4.5	9
237	Controlled-Alignment Patterns of Dipeptide Micro- and Nanofibers. ACS Nano, 2022, 16, 10372-10382.	7.3	9
238	Electrochemical Behavior of Cationicâ€Anionic Surfactant Solutions by Cyclic Voltammetry. Journal of Dispersion Science and Technology, 2006, 27, 781-787.	1.3	8
239	Phase behavior, rheological properties, and vesicles of alkyldimethylamine oxide and fluorinated acidic surfactant mixtures. Soft Matter, 2009, 5, 990.	1.2	8
240	Synergism and formation of vesicle gels in salt-free catanionic hydrocarbon/fluorocarbon surfactant mixtures. RSC Advances, 2014, 4, 40595-40605.	1.7	8
241	A Green Synthesis of Nanosheetâ€Constructed Pd Particles in an Ionic Liquid and Their Superior Electrocatalytic Performance. ChemPhysChem, 2015, 16, 3865-3870.	1.0	8
242	Colloidal clusters of icosahedrons and face-centred cubes. Journal of Colloid and Interface Science, 2020, 563, 308-317.	5. 0	8
243	Smart-Responsive Colloidal Capsules as an Emerging Tool to Design a Multifunctional Lubricant Additive. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7714-7724.	4.0	8
244	Facile synthesis of alkylated carbon dots with blue emission in halogenated benzene solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126129.	2.3	8
245	Water-in-Water Emulsions, Ultralow Interfacial Tension, and Biolubrication. CCS Chemistry, 2022, 4, 2102-2114.	4.6	8
246	Metal ion-triggered Pickering emulsions and foams for efficient metal ion extraction. Journal of Colloid and Interface Science, 2021, 602, 187-196.	5.0	8
247	Fluorescent magnetic ionic liquids with multiple responses to temperature, humidity and organic vapors. Journal of Materials Chemistry C, 2021, 9, 13276-13285.	2.7	8
248	Fluorescent hybrid nanospheres induced by single-stranded DNA and magnetic carbon quantum dots. New Journal of Chemistry, 2019, 43, 4965-4974.	1.4	7
249	Magnetic and Biocompatible Fullerenol/Fe(III) Microcapsules with Antioxidant Activities. ACS Applied Bio Materials, 2020, 3, 358-368.	2.3	7
250	Intrinsic Effect of Nanoparticles on the Mechanical Rupture of Doubledâ€6hell Colloidal Capsule via In Situ TEM Mechanical Testing and STEM Interfacial Analysis. Small, 2020, 16, e2001978.	5.2	7
251	Amphiphilic Au Nanoclusters Modulated by Magnetic Gemini Surfactants as a Cysteine Chemosensor and an MRI Contrast Agent. Langmuir, 2021, 37, 3130-3138.	1.6	7
252	Phase Behavior and Aggregate Transition in Aqueous Mixtures of Negatively Charged Carbon Dots and Cationic Surfactants. Journal of Physical Chemistry C, 2021, 125, 17291-17302.	1.5	7

#	Article	IF	Citations
253	Confined microemulsion sono-polymerization of poly(ethylene glycol) nanoparticles for targeted delivery. Chemical Communications, 2022, 58, 7777-7780.	2.2	7
254	Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Research, 2023, 16, 1533-1544.	5.8	7
255	Phase behavior and properties of salt-free cationic/anionic surfactant mixtures of oleic acid and stearic acid. Science Bulletin, 2009, 54, 3953-3957.	1.7	6
256	Bilayer swelling of nonionic surfactant and sodium dodecylsulfate mixed system by refractive-index matching. Colloid and Polymer Science, 2012, 290, 1493-1499.	1.0	6
257	Swelling of Lamellar Gel from Catanionic Hydro- and Perfluoro-Carbon Surfactant Mixtures by Refractive-Index Matching. Journal of Dispersion Science and Technology, 2014, 35, 1-6.	1.3	6
258	Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity. Journal of Colloid and Interface Science, 2016, 478, 303-310.	5.0	6
259	Plasmonic core–shell ionic microgels for photo-tuning catalytic applications. New Journal of Chemistry, 2018, 42, 2149-2157.	1.4	6
260	Effect of Cationic Surfactants with Different Counterions on the Growth of Au Nanoclusters. Langmuir, 2018, 34, 6138-6146.	1.6	6
261	Intrinsic Effect of Alkali Concentration on Oxidation Reactivity and High-Temperature Lubricity of Silicate Melts between Rubbed Steel/Steel Contacts. Langmuir, 2020, 36, 7850-7860.	1.6	6
262	Systems Chemistry in Selfâ€Healing Materials. ChemSystemsChem, 2021, 3, e2100016.	1.1	6
263	K+, Sr2+-Triggered Phase Transitions from Chiral Thermotropic Liquid Crystalline to G-Quadruplex CTLC with Circularly Polarized Luminescence. Journal of Physical Chemistry C, 2021, 125, 19570-19579.	1.5	6
264	Fullerene superlattices containing charge transfer complexes for an improved nonlinear optical performance. Nanoscale, 2022, 14, 2344-2351.	2.8	6
265	Guanine Analogue-Based Assemblies: Construction and Luminescence Functions. Langmuir, 2022, 38, 7099-7106.	1.6	6
266	Hybrid Inorganic/Organic Quasi-Single Crystals of Wheel-Shaped \$\${hbox{Mo}_{154}}\$\$ Macro-anions and Cationic-surfactants. Journal of Cluster Science, 2006, 17, 467-478.	1.7	5
267	HSO3-functionalized $Br ilde{A}_n$ nsted acidic ionic liquids promote esterification of aromatic acid. Science Bulletin, 2013, 58, 3202-3207.	1.7	5
268	Lamellar phase formation in catanionic mixtures of hydrogenated and fluorinated surfactants: a comparative study. Colloid and Polymer Science, 2014, 292, 67-75.	1.0	5
269	Emulsion-directed liquid/liquid interfacial fabrication of lanthanide ion-doped block copolymer composite thin films. Journal of Colloid and Interface Science, 2015, 438, 212-219.	5.0	5
270	Dualâ€Responsive Viscoelastic Lyotropic Liquid Crystal Fluids to Control the Diffusion of Hydrophilic and Hydrophobic Molecules. ChemPhysChem, 2016, 17, 2079-2087.	1.0	5

#	Article	IF	Citations
271	Phase Structure Transition and Properties of Salt-Free Phosphoric Acid/Non-ionic Surfactants in Water. Langmuir, 2016, 32, 8366-8373.	1.6	5
272	Block copolymer vesicles via liquid/liquid interface-mediated self-assembly. Applied Surface Science, 2020, 499, 143896.	3.1	5
273	Biologically-derived nanoparticles for chemo-ferroptosis combination therapy. Materials Chemistry Frontiers, 2021, 5, 3813-3822.	3.2	5
274	Ultraâ€Sensitive and Ultraâ€Stretchable Strain Sensors Based on Emulsion Gels with Broad Operating Temperature. Chemistry - A European Journal, 2021, 27, 13161-13171.	1.7	5
275	Sonoâ€Fenton Chemistry Converts Phenol and Phenyl Derivatives into Polyphenols for Engineering Surface Coatings. Angewandte Chemie, 2021, 133, 21699-21705.	1.6	5
276	Alkylated, naphthalimide-containing ionic compounds with rich thermotropic behaviour and nonlinear optical response. Journal of Materials Chemistry C, 2022, 10, 3061-3070.	2.7	5
277	Multistimuli-Responsive and Antifreeze Aggregation-Induced Emission-Active Gels Based on CuNCs. Langmuir, 2022, 38, 343-351.	1.6	5
278	Chemically attaching polyhydroxyethylmethacrylate brush on substrate surface, derivation, and the role in differential etching. Journal of Applied Polymer Science, 2007, 106, 723-729.	1.3	4
279	Al3+-induced vesicle formation. Science Bulletin, 2007, 52, 2600-2604.	1.7	4
280	Effect of addition of dendritic C60 amphiphiles on the structure of cationic surfactant solutions. Journal of Colloid and Interface Science, 2008, 320, 307-314.	5.0	4
281	Phase behavior and rheological properties of lecithin/TTAOH/H2O mixtures. Colloid and Polymer Science, 2011, 289, 1451-1457.	1.0	4
282	Efficient degradation of methyl orange via multilayer films of titanium dioxide and silicotungstic acid. Science China Chemistry, 2012, 55, 2366-2372.	4.2	4
283	Hydrogels formed by l-histidine derivatives with highly selective release for charged dyes. Chinese Chemical Letters, 2018, 29, 1219-1222.	4.8	4
284	Hierarchically Organized Honeycomb Films Based on the Self-Assembly of Fulleromonodendrons. Journal of Physical Chemistry C, 2018, 122, 24851-24862.	1.5	4
285	Magnetic polymerizable surfactants: thermotropic liquid crystal behaviors and construction of nanostructured films. New Journal of Chemistry, 2020, 44, 16537-16545.	1.4	4
286	Co-assembled gold nanorod@tripeptide core-shell nanospheres for aqueous Hg2+ removal. Journal of Colloid and Interface Science, 2021, 599, 436-442.	5.0	4
287	Effect of environmental factors on the emulsion polymerization of nanogels. Chemical Physics Letters, 2022, 790, 139353.	1.2	4
288	Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. Soft Matter, 2022, 18, 3856-3866.	1.2	4

#	Article	IF	CITATIONS
289	Conformation and aggregation behavior of poly(ethylene glycol)â€ <i>b</i> à€poly(lactic acid) amphiphilic copolymer chains in dilute/semidilute THF solutions. Journal of Applied Polymer Science, 2012, 125, E223.	1.3	3
290	Synthesis and multi-stimuli-responsive behavior of copolymer of N,N′-dimethylacrylamide and complex pseudorotaxane. Polymer Bulletin, 2012, 69, 199-217.	1.7	3
291	Electromotive force study on interaction between a triblock copolymer and cationic surfactants in water. Colloid and Polymer Science, 2013, 291, 1479-1486.	1.0	3
292	Block copolymernanolithography to manufacture nanopatterned gold substrate for surface-initiated polymerization. Journal of Materials Chemistry C, 2013, 1, 902-907.	2.7	3
293	Interaction between zero-charged catanionic vesicles and PEO–PPO–PEO triblock copolymers. Colloid and Polymer Science, 2014, 292, 2795-2802.	1.0	3
294	Synthesis of a New functionalized phenol and use as ink-free rewriting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123856.	2.3	3
295	Drug Implants of Hydrogels via Collective Behavior of Microgel Colloids for On-Demand Cancer Therapy. ACS Applied Bio Materials, 2019, 2, 1531-1541.	2.3	3
296	Self-assembly and photo-responsive behavior of bis-terpyridyl Eu3+-complex L1. New Journal of Chemistry, 2019, 43, 19355-19364.	1.4	3
297	AlCl ₃ -promoted growth of alkylated carbon dots with an enhanced nonlinear optical response. Journal of Materials Chemistry C, 2022, 10, 5576-5581.	2.7	3
298	A facile approach for synthesis of high-stable CdS nanoparticles. Science Bulletin, 2006, 51, 1266-1268.	1.7	2
299	Salt-free vesicle-phases and their template effect. Science Bulletin, 2007, 52, 2593-2599.	1.7	2
300	Dopant-Mediated Interactions in a Lecithin Lamellar Phase. Journal of Dispersion Science and Technology, 2008, 29, 985-990.	1.3	2
301	Aggregation behavior of poly(methacrylic acid) with cucurbit[7]uril and the effect of ammonia ions on aggregation. Journal of Polymer Research, 2011, 18, 1735-1742.	1.2	2
302	Synthesis and Aggregation Behavior of Copolymer of Acrylamide with Pseudorotaxane Monomer by Threading Cucurbit[6]uril ontoN′-(4-vinylbenzyl)-1,4-diaminobutane Dihydrochloride. Journal of Dispersion Science and Technology, 2012, 33, 639-646.	1.3	2
303	Determination of the critical micellar temperature of F127 aqueous solutions at the presence of sodium bromide by cyclic voltammetry. Colloid and Polymer Science, 2015, 293, 787-796.	1.0	2
304	Self-assembled structural transition inl-Arg/H-AOT mixtures driven by double hydrogen bonding. RSC Advances, 2016, 6, 47919-47925.	1.7	1
305	Compaction of DNA using C12EO4 cooperated with Fe3+. Colloids and Surfaces B: Biointerfaces, 2016, 144, 355-365.	2.5	1
306	The phase transition from L3 phase to vesicles and rheological properties of a nonionic surfactant mixture system. Colloid and Polymer Science, 2017, 295, 1663-1670.	1.0	1

#	Article	IF	CITATIONS
307	DNA-involved thermotropic liquid crystals from catanionic vesicles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128607.	2.3	1
308	Phase Transition from Worm-Like Micelles to Vesicles Triggered by pH Value. Journal of Dispersion Science and Technology, 2015, 36, 859-865.	1.3	0
309	Self-Stabilized Giant Aggregates in Water from Room-Temperature Ionic Liquids with an Asymmetric Polar–Apolar–Polar Architecture. Journal of Physical Chemistry B, 2020, 124, 4651-4660.	1.2	O