## Paul Wilson

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066340/publications.pdf

Version: 2024-02-01

|          |                | 117453       | 118652         |
|----------|----------------|--------------|----------------|
| 85       | 4,101          | 34           | 62             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
| 00       | 0.0            | 0.0          | 2252           |
| 90       | 90             | 90           | 3352           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chemical Reviews, 2016, 116, 835-877.                                                                                                             | 23.0 | 373       |
| 2  | Copper(II)/Tertiary Amine Synergy in Photoinduced Living Radical Polymerization: Accelerated Synthesis of i‰-Functional and l $\pm$ ,i‰-Heterofunctional Poly(acrylates). Journal of the American Chemical Society, 2014, 136, 1141-1149. | 6.6  | 336       |
| 3  | Aqueous Copper-Mediated Living Polymerization: Exploiting Rapid Disproportionation of CuBr with Me <sub>6</sub> TREN. Journal of the American Chemical Society, 2013, 135, 7355-7363.                                                     | 6.6  | 297       |
| 4  | Photoinduced sequence-control via one pot living radical polymerization of acrylates. Chemical Science, 2014, 5, 3536-3542.                                                                                                               | 3.7  | 151       |
| 5  | Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 $\hat{A}^{\circ}$ C. Polymer Chemistry, 2015, 6, 406-417.                                                                                        | 1.9  | 137       |
| 6  | High Molecular Weight Block Copolymers by Sequential Monomer Addition via Cu(0)-Mediated Living Radical Polymerization (SET-LRP): An Optimized Approach. ACS Macro Letters, 2013, 2, 896-900.                                             | 2.3  | 124       |
| 7  | Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chemical Science, 2014, 5, 715-726.                                                                    | 3.7  | 111       |
| 8  | Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. Journal of the American Chemical Society, 2013, 135, 2875-2878.                                                                                 | 6.6  | 106       |
| 9  | Multiblock sequence-controlled glycopolymers via Cu(0)-LRP following efficient thiol–halogen, thiol–epoxy and CuAAC reactions. Polymer Chemistry, 2014, 5, 3876-3883.                                                                     | 1.9  | 101       |
| 10 | Expanding the Scope of the Photoinduced Living Radical Polymerization of Acrylates in the Presence of CuBr <sub>2</sub> and Me <sub>6</sub> -Tren. Macromolecules, 2014, 47, 3852-3859.                                                   | 2.2  | 100       |
| 11 | Photoinduced Synthesis of α,ï‰-Telechelic Sequence-Controlled Multiblock Copolymers.<br>Macromolecules, 2015, 48, 1404-1411.                                                                                                              | 2.2  | 97        |
| 12 | Poly(2-oxazoline)-based micro- and nanoparticles: A review. European Polymer Journal, 2017, 88, 486-515.                                                                                                                                  | 2.6  | 91        |
| 13 | Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. Journal of the American Chemical Society, 2015, 137, 9344-9353.                                                                | 6.6  | 84        |
| 14 | <i>Absolut</i> "copper catalyzation perfectedâ€, robust living polymerization of NIPAM:<br><i>Guinness</i> is good for SET-LRP. Polymer Chemistry, 2014, 5, 57-61.                                                                        | 1.9  | 80        |
| 15 | Copper(0)-mediated radical polymerisation in a self-generating biphasic system. Polymer Chemistry, 2013, 4, 106-112.                                                                                                                      | 1.9  | 75        |
| 16 | Organic Arsenicals As Efficient and Highly Specific Linkers for Protein/Peptide–Polymer Conjugation. Journal of the American Chemical Society, 2015, 137, 4215-4222.                                                                      | 6.6  | 71        |
| 17 | Photo-induced living radical polymerization of acrylates utilizing a discrete copper( <scp>ii</scp> )–formate complex. Chemical Communications, 2015, 51, 5626-5629.                                                                      | 2.2  | 70        |
| 18 | The importance of ligand reactions in Cu(0)-mediated living radical polymerisation of acrylates. Polymer Chemistry, 2013, 4, 2672.                                                                                                        | 1.9  | 68        |

| #  | Article                                                                                                                                                                                                                                   | IF          | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 19 | Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu(0)-Mediated Reversible-Deactivation Radical Polymerization. Macromolecules, 2016, 49, 483-489.                                                                               | 2.2         | 67        |
| 20 | Synthesis and Aggregation of Double Hydrophilic Diblock Glycopolymers via Aqueous SET-LRP. ACS Macro Letters, 2014, 3, 491-495.                                                                                                           | 2.3         | 64        |
| 21 | Copper-mediated controlled radical polymerization under biological conditions: SET-LRP in blood serum. Chemical Communications, 2013, 49, 6608.                                                                                           | 2.2         | 62        |
| 22 | Aqueous Copperâ€Mediated Living Radical Polymerisation of <i>N</i> â€Acryloylmorpholine, SET‣RP in Water. Macromolecular Rapid Communications, 2014, 35, 965-970.                                                                         | 2.0         | 58        |
| 23 | Copper mediated atom transfer radical cyclisations with AIBN. Tetrahedron Letters, 2008, 49, 4848-4850.                                                                                                                                   | 0.7         | 55        |
| 24 | Synthesis of well-defined $\hat{l}_{\pm,i}$ %-telechelic multiblock copolymers in aqueous medium: in situ generation of $\hat{l}_{\pm,i}$ %-diols. Polymer Chemistry, 2015, 6, 2226-2233.                                                 | 1.9         | 54        |
| 25 | Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polymer Chemistry, 2016, 7, 7002-7010.                                                                                               | 1.9         | 54        |
| 26 | Copper-mediated living radical polymerization (SET-LRP) of lipophilic monomers from multi-functional initiators: reducing star–star coupling at high molecular weights and high monomer conversions. Polymer Chemistry, 2014, 5, 892-898. | 1.9         | 52        |
| 27 | A Hydrogelâ€Based Localized Release of Colistin for Antimicrobial Treatment of Burn Wound Infection.<br>Macromolecular Bioscience, 2017, 17, 1600320.                                                                                     | 2.1         | 51        |
| 28 | Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Organic Media. Macromolecules, 2015, 48, 5517-5525.                                                                                                    | 2.2         | 50        |
| 29 | Investigating the Mechanism of Copper(0)-Mediated Living Radical Polymerization in Aqueous Media.<br>Macromolecules, 2015, 48, 6421-6432.                                                                                                 | 2.2         | 49        |
| 30 | In Situ Conjugation of Dithiophenol Maleimide Polymers and Oxytocin for Stable and Reversible Polymer–Peptide Conjugates. Bioconjugate Chemistry, 2015, 26, 633-638.                                                                      | 1.8         | 47        |
| 31 | Polymerization of long chain [meth]acrylates by Cu(0)-mediated and catalytic chain transfer polymerisation (CCTP): high fidelity end group incorporation and modification. Polymer Chemistry, 2013, 4, 4113.                              | 1.9         | 45        |
| 32 | Well-Defined PDMAEA Stars via Cu(0)-Mediated Reversible Deactivation Radical Polymerization. Macromolecules, 2016, 49, 8914-8924.                                                                                                         | 2.2         | 39        |
| 33 | Profiling the Serum Protein Corona of Fibrillar Human Islet Amyloid Polypeptide. ACS Nano, 2018, 12, 6066-6078.                                                                                                                           | <b>7.</b> 3 | 39        |
| 34 | Synthesis and reactivity of $\hat{l}_{\pm}$ , $\hat{l}_{\infty}$ -homotelechelic polymers by Cu(0)-mediated living radical polymerization. European Polymer Journal, 2015, 62, 294-303.                                                   | 2.6         | 36        |
| 35 | Regiochemistry of Copper(I)-Mediated Cyclization Reactions of Halo-dienamides. Journal of Organic Chemistry, 2007, 72, 5923-5926.                                                                                                         | 1.7         | 35        |
| 36 | Self-assembly and disassembly of stimuli responsive tadpole-like single chain nanoparticles using a switchable hydrophilic/hydrophobic boronic acid cross-linker. Polymer Chemistry, 2017, 8, 4079-4087.                                  | 1.9         | 34        |

| #  | Article                                                                                                                                                                                                                              | IF  | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dual Stimuli-Responsive Comb Polymers from Modular <i>N</i> -Acylated Poly(aminoester)-Based Macromonomers. ACS Macro Letters, 2016, 5, 321-325.                                                                                     | 2.3 | 32        |
| 38 | Specific and Differential Binding of <i>N</i> -Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules, 2017, 18, 1624-1633.                                   | 2.6 | 32        |
| 39 | Axially Chiral Enamides: Substituent Effects, Rotation Barriers, and Implications for their Cyclization Reactions. Journal of Organic Chemistry, 2016, 81, 5547-5565.                                                                | 1.7 | 31        |
| 40 | Controlled aqueous polymerization of acrylamides and acrylates and "in situ―depolymerization in the presence of dissolved CO <sub>2</sub> . Chemical Communications, 2016, 52, 6533-6536.                                            | 2.2 | 29        |
| 41 | 2-Aryl propionamides via 1,4-aryl radical migration from N-arylsulfonyl-2-bromopropionamides.<br>Tetrahedron Letters, 2009, 50, 6311-6314.                                                                                           | 0.7 | 28        |
| 42 | Surface patterning of polyacrylamide gel using scanning electrochemical cell microscopy (SECCM). Chemical Communications, 2016, 52, 9929-9932.                                                                                       | 2.2 | 26        |
| 43 | Atom-Transfer Cyclization with CuSO <sub>4</sub> /KBH <sub>4</sub> : A Formal "Activators Generated by Electron Transfer―Process Also Applicable to Atom-Transfer Polymerization. Journal of Organic Chemistry, 2012, 77, 6778-6788. | 1.7 | 25        |
| 44 | Novel comb polymers from alternating N-acylated poly(aminoester)s obtained by spontaneous zwitterionic copolymerisation. Chemical Communications, 2015, 51, 16213-16216.                                                             | 2.2 | 25        |
| 45 | Microscale synthesis of multiblock copolymers using ultrafast RAFT polymerisation. Polymer Chemistry, 2019, 10, 1186-1191.                                                                                                           | 1.9 | 25        |
| 46 | Polymerisation of 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS) and acryloyl phosphatidylcholine (APC) via aqueous Cu(0)-mediated radical polymerisation. Polymer Chemistry, 2016, 7, 2452-2456.                   | 1.9 | 23        |
| 47 | High resolution visualization of the redox activity of Li <sub>2</sub> O <sub>2</sub> in non-aqueous media: conformal layer <i>vs.</i> toroid structure. Chemical Communications, 2018, 54, 3053-3056.                               | 2.2 | 23        |
| 48 | Synthesis and Applications of Protein/Peptide-Polymer Conjugates. Macromolecular Chemistry and Physics, 2017, 218, 1600595.                                                                                                          | 1.1 | 22        |
| 49 | Comb Poly(Oligo(2â€Ethylâ€2â€Oxazoline)Methacrylate)â€Peptide Conjugates Prepared by Aqueous<br>Cu(0)â€Mediated Polymerization and Reductive Amination. Macromolecular Rapid Communications, 2017,<br>38, 1600534.                   | 2.0 | 22        |
| 50 | 1,4-Aryl migration under copper(I) atom transfer conditions. Tetrahedron Letters, 2009, 50, 5609-5612.                                                                                                                               | 0.7 | 21        |
| 51 | Self-Assembling Protein–Polymer Bioconjugates for Surfaces with Antifouling Features and Low Nonspecific Binding. ACS Applied Materials & Interfaces, 2019, 11, 3599-3608.                                                           | 4.0 | 21        |
| 52 | Cu(0)-mediated living radical polymerisation in dimethyl lactamide (DML); an unusual green solvent with limited environmental impact. Polymer Chemistry, 2015, 6, 8319-8324.                                                         | 1.9 | 19        |
| 53 | Methacrylic Zwitterionic, Thermoresponsive, and Hydrophilic (Co)Polymers via Cu(0)-Polymerization: The Importance of Halide Salt Additives. Macromolecular Rapid Communications, 2016, 37, 356-361.                                  | 2.0 | 19        |
| 54 | Hydrosilylation as an efficient tool for polymer synthesis and modification with methacrylates. RSC Advances, 2015, 5, 5879-5885.                                                                                                    | 1.7 | 18        |

| #  | Article                                                                                                                                                                                                 | IF  | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bioinspired coating of TiO <sub>2</sub> nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polymer Chemistry, 2017, 8, 6570-6580.                                   | 1.9 | 17        |
| 56 | Bond Rotation Dynamics of Enamides: The Effect of the Acyl Group and Potential for Chirality Transfer during 5-Endo Trig Radical Cyclizations. Journal of Organic Chemistry, 2011, 76, 4546-4551.       | 1.7 | 16        |
| 57 | Reversible Regulation of Thermoresponsive Property of Dithiomaleimide-Containing Copolymers via Sequential Thiol Exchange Reactions. ACS Macro Letters, 2016, 5, 709-713.                               | 2.3 | 16        |
| 58 | A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (MDR) gram-negative bacteria. Journal of Controlled Release, 2017, 259, 83-91.                                          | 4.8 | 15        |
| 59 | Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 6444-6452.                                    | 4.0 | 15        |
| 60 | Facile one-pot/one-step synthesis of heterotelechelic N-acylated poly(aminoester) macromonomers for carboxylic acid decorated comb polymers. Polymer Chemistry, 2016, 7, 6703-6707.                     | 1.9 | 14        |
| 61 | Plug-and-play aqueous electrochemical atom transfer radical polymerization. Chemical Communications, 2021, 57, 3897-3900.                                                                               | 2.2 | 14        |
| 62 | Stability Enhancing <i>N</i> -Terminal PEGylation of Oxytocin Exploiting Different Polymer Architectures and Conjugation Approaches. Biomacromolecules, 2016, 17, 2755-2766.                            | 2.6 | 13        |
| 63 | Mussel-inspired thermoresponsive polymers with a tunable LCST by Cu(0)-LRP for the construction of smart TiO <sub>2</sub> nanocomposites. Polymer Chemistry, 2017, 8, 3679-3688.                        | 1.9 | 13        |
| 64 | Tuning the Structure, Stability, and Responsivity of Polymeric Arsenical Nanoparticles Using Polythiol Cross-Linkers. Macromolecules, 2019, 52, 992-1003.                                               | 2.2 | 13        |
| 65 | Bond Rotation Dynamics of N-Cycloalkenyl-N-benzyl α-Haloacetamide Derivatives. Journal of Organic Chemistry, 2009, 74, 4262-4266.                                                                       | 1.7 | 12        |
| 66 | High T g poly(ester amide)s by melt polycondensation of monomers from renewable resources; citric acid, D-glucono-l´-lactone and amino acids: A DSC study. European Polymer Journal, 2017, 94, 11-19.   | 2.6 | 12        |
| 67 | Synthesis, aggregation and responsivity of block copolymers containing organic arsenicals. Polymer Chemistry, 2018, 9, 1551-1556.                                                                       | 1.9 | 12        |
| 68 | Reversible surface functionalisation of emulsion-templated porous polymers using dithiophenol maleimide functional macromolecules. Chemical Communications, 2017, 53, 9789-9792.                        | 2.2 | 11        |
| 69 | Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]–Colistin Prodrugs through<br>Copper-Mediated Photoinduced Living Radical Polymerization. Bioconjugate Chemistry, 2017, 28,<br>1916-1924. | 1.8 | 11        |
| 70 | Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science. Macromolecular Rapid Communications, 2018, 39, 1800205.                                                                    | 2.0 | 11        |
| 71 | Thiol-reactive (co)polymer scaffolds comprising organic arsenical acrylamides. Chemical Communications, 2017, 53, 8447-8450.                                                                            | 2.2 | 9         |
| 72 | UV irradiation of Cu-based complexes with aliphatic amine ligands as used in living radical polymerization. European Polymer Journal, 2020, 123, 109388.                                                | 2.6 | 9         |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Polyurea microcapsules from isocyanatoethyl methacrylate copolymers. Journal of Polymer Science Part A, 2016, 54, 2698-2705.                                                        | 2.5 | 7         |
| 74 | Aqueous electrochemically-triggered atom transfer radical polymerization. Chemical Science, 2022, 13, 5741-5749.                                                                    | 3.7 | 7         |
| 75 | Current-controlled †plug-and-play' electrochemical atom transfer radical polymerization of acrylamides in water. Polymer Chemistry, 2022, 13, 3460-3470.                            | 1.9 | 7         |
| 76 | A sequential native chemical ligation – thiol-Michael addition strategy for polymer–polymer ligation. Polymer Chemistry, 2019, 10, 5242-5250.                                       | 1.9 | 6         |
| 77 | Synthesis and [2+2]-photodimerisation of monothiomaleimide functionalised linear and brush-like polymers. Chemical Communications, 2020, 56, 9545-9548.                             | 2.2 | 6         |
| 78 | Thermoresponsive viscosity of polyacrylamide block copolymers synthesised via aqueous Cu-RDRP. European Polymer Journal, 2019, 114, 326-331.                                        | 2.6 | 5         |
| 79 | Sequence-Controlled Multi-Block Glycopolymers via Cu(0) Mediated Living Radical Polymerization. ACS Symposium Series, 2014, , 327-348.                                              | 0.5 | 4         |
| 80 | Polymeric arsenicals as scaffolds for functional and responsive hydrogels. Journal of Materials Chemistry B, 2019, 7, 4263-4271.                                                    | 2.9 | 4         |
| 81 | Unprecedented Control over the Acrylate and Acrylamide Polymerization in Aqueous and Organic Media. ACS Symposium Series, 2015, , 29-45.                                            | 0.5 | 3         |
| 82 | Thermal study of polyester networks based on renewable monomers citric acid and gluconolactone. Polymer International, 2017, 66, 59-63.                                             | 1.6 | 3         |
| 83 | Functionalisation and stabilisation of polymeric arsenical nanoparticles prepared by sequential reductive and radical cross-linking. Polymer Chemistry, 2020, 11, 2519-2531.        | 1.9 | 2         |
| 84 | Synthesis of biodegradable liquid-core microcapsules composed of isocyanate functionalized poly(ε-caprolactone)-containing copolymers. European Polymer Journal, 2021, 159, 110739. | 2.6 | 2         |
| 85 | Synthesis and self-assembly of corona-functionalised polymeric arsenical nanoparticles. European Polymer Journal, 2021, 144, 110235.                                                | 2.6 | O         |