Jean-Luc Putaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066169/publications.pdf Version: 2024-02-01

		26610	25770
217	13,720	56	108
papers	citations	h-index	g-index
224	224	224	13977
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose. Biomacromolecules, 2006, 7, 1687-1691.	2.6	1,524
2	The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules, 2008, 9, 57-65.	2.6	1,015
3	Measurement of the displacement field of dislocations to 0.03 à by electron microscopy. Nature, 2003, 423, 270-273.	13.7	501
4	Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites. Langmuir, 2004, 20, 1564-1571.	1.6	389
5	Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydrate Polymers, 2009, 76, 51-59.	5.1	372
6	Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 2011, 84, 96-102.	5.1	343
7	Platelet Nanocrystals Resulting from the Disruption of Waxy Maize Starch Granules by Acid Hydrolysis. Biomacromolecules, 2003, 4, 1198-1202.	2.6	292
8	Preparation By Grafting Onto, Characterization, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals. Biomacromolecules, 2010, 11, 3652-3659.	2.6	213
9	Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 2012, 89, 1033-1037.	5.1	208
10	Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering. Journal of Chemical Physics, 2007, 126, 045101.	1.2	198
11	Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose, 2007, 14, 585-592.	2.4	196
12	Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose, 2012, 19, 1527-1536.	2.4	176
13	Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. Journal of Materials Science, 2002, 37, 3915-3923.	1.7	175
14	Orientation of Native Cellulose in an Electric Field. Langmuir, 2006, 22, 4899-4901.	1.6	172
15	Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydrate Polymers, 2016, 153, 143-152.	5.1	155
16	Metabolic Symbiosis and the Birth of the Plant Kingdom. Molecular Biology and Evolution, 2008, 25, 536-548.	3.5	153
17	Formation of polymer vesicles by simultaneous chain growth and self-assembly of amphiphilic block copolymers. Chemical Communications, 2009, , 2887.	2.2	145
18	In Vitro Versus in VivoCellulose Microfibrils from Plant Primary Wall Synthases: Structural Differences. Journal of Biological Chemistry, 2002, 277, 36931-36939.	1.6	141

#	Article	IF	CITATIONS
19	Poly(l-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocolloids, 2006, 20, 687-697.	5.6	137
20	Self-Association and Crystallization of Amylose. Australian Journal of Chemistry, 2007, 60, 706.	0.5	134
21	Crystal Structure of A-amylose: A Revisit from Synchrotron Microdiffraction Analysis of Single Crystals. Macromolecules, 2009, 42, 1167-1174.	2.2	120
22	Amylose Synthesized in Vitro by Amylosucrase: Morphology, Structure, and Properties. Biomacromolecules, 2005, 6, 1000-1011.	2.6	119
23	Plastidial phosphorylase is required for normal starch synthesis inChlamydomonas reinhardtii. Plant Journal, 2006, 48, 274-285.	2.8	105
24	Structural Aspects of the Swelling of β Chitin in HCl and its Conversion into α Chitin. Macromolecules, 1997, 30, 3867-3873.	2.2	99
25	Starch Nanocrystal Fillers in an Acrylic Polymer Matrix. Macromolecular Symposia, 2005, 221, 95-104.	0.4	97
26	Crystal structure of amylose complexes with small ligands. International Journal of Biological Macromolecules, 2003, 33, 227-234.	3.6	96
27	Silicone–polyacrylate composite latex particles. Particles formation and film properties. Polymer, 2005, 46, 1331-1337.	1.8	95
28	Synthesis of polymer/Laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchanged Laponite clay platelets. Progress in Solid State Chemistry, 2006, 34, 121-137.	3.9	95
29	Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1119-1125.	0.8	94
30	Network Formation in Dilute Amylose and Amylopectin Studied by TEM. Macromolecules, 2000, 33, 6416-6422.	2.2	92
31	Reorientation of Cellulose Nanowhiskers in Agarose Hydrogels under Tensile Loading. Biomacromolecules, 2012, 13, 850-856.	2.6	91
32	Polymer/Laponite Composite Colloids through Emulsion Polymerization:  Influence of the Clay Modification Level on Particle Morphology. Macromolecules, 2006, 39, 9177-9184.	2.2	90
33	Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Advances, 2016, 6, 76017-76027.	1.7	90
34	Self-assembling and Chiral Nematic Properties of Organophilic Cellulose Nanocrystals. Journal of Physical Chemistry B, 2009, 113, 11069-11075.	1.2	89
35	Polymer/Laponite Composite Latexes: Particle Morphology, Film Microstructure, and Properties. Macromolecular Rapid Communications, 2007, 28, 1567-1573.	2.0	87
36	Flavan-3-ol Aggregation in Model Ethanolic Solutions:  Incidence of Polyphenol Structure, Concentration, Ethanol Content, and Ionic Strength. Langmuir, 2003, 19, 10563-10572.	1.6	86

#	Article	IF	CITATIONS
37	Structural data on the intra-crystalline swelling of β-chitin. International Journal of Biological Macromolecules, 2000, 28, 81-88.	3.6	83
38	The molecular structure of waxy maize starch nanocrystals. Carbohydrate Research, 2009, 344, 1558-1566.	1.1	81
39	Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose, 2014, 21, 4119-4133.	2.4	80
40	Polyester Nanoparticles Presenting Mannose Residues: Toward the Development of New Vaccine Delivery Systems Combining Biodegradability and Targeting Properties. Biomacromolecules, 2009, 10, 651-657.	2.6	77
41	Ultrastructural aspects of phytoglycogen from cryo-transmission electron microscopy and quasi-elastic light scattering data. International Journal of Biological Macromolecules, 1999, 26, 145-150.	3.6	75
42	Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid. Biomacromolecules, 2015, 16, 2529-2536.	2.6	75
43	α-D-Glucan-Based Dendritic Nanoparticles Prepared by in Vitro Enzymatic Chain Extension of Glycogen. Biomacromolecules, 2006, 7, 1720-1728.	2.6	72
44	Anisotropy of structure and transport properties in sulfonated polyimide membranes. Journal of Membrane Science, 2003, 214, 31-42.	4.1	70
45	Influence of alkali concentration on the deproteinization and/or gelatinization of rice starch. Carbohydrate Polymers, 2007, 70, 160-165.	5.1	70
46	Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. Soft Matter, 2016, 12, 7539-7550.	1.2	68
47	Nanoparticles of β-Cyclodextrin Esters Obtained by Self-Assembling of Biotransesterified β-Cyclodextrins. Biomacromolecules, 2006, 7, 515-520.	2.6	66
48	Silica Encapsulation by Miniemulsion Polymerization: Distribution and Localization of the Silica Particles in Droplets and Latex Particles. Langmuir, 2012, 28, 6021-6031.	1.6	63
49	Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2167-2177.	1.1	63
50	Cerium oxide encapsulation by emulsion polymerization using hydrophilic macroRAFT agents. Polymer Chemistry, 2013, 4, 607-614.	1.9	62
51	Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Industrial Crops and Products, 2016, 85, 1-10.	2.5	62
52	Single Crystals of V-Amylose Complexed with α-Naphthol. Biomacromolecules, 2007, 8, 1319-1326.	2.6	61
53	Molecular and Crystal Structures of Inulin from Electron Diffraction Data. Macromolecules, 1996, 29, 4626-4635.	2.2	60
54	HREM study of self-accommodated thermal ε-martensite in an Feî—,Mnî—,Siî—,Crî—,Ni shape memory alloy. Acta Materialia, 1996, 44, 1701-1716.	3.8	60

4

#	Article	IF	CITATIONS
55	Molecular and Crystal Structure of 7-Fold V-Amylose Complexed with 2-Propanol. Macromolecules, 2010, 43, 8628-8636.	2.2	59
56	Biosynthesis of (1→3)-β-d-glucan (callose) by detergent extracts of a microsomal fraction fromArabidopsis thaliana. FEBS Journal, 2001, 268, 4628-4638.	0.2	58
57	Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217, 179-184.	2.3	57
58	Nature of the Periplastidial Pathway of Starch Synthesis in the Cryptophyte Guillardia theta. Eukaryotic Cell, 2006, 5, 954-963.	3.4	56
59	Stress and strain around grain-boundary dislocations measured by high-resolution electron microscopy. Philosophical Magazine, 2006, 86, 4641-4656.	0.7	55
60	Kinetics of Fibril Formation of Bovine κ-Casein Indicate a Conformational Rearrangement as a Critical Step in the Process. Journal of Molecular Biology, 2008, 381, 1267-1280.	2.0	55
61	Variation in Storage α-Glucans of the Porphyridiales (Rhodophyta). Plant and Cell Physiology, 2008, 49, 103-116.	1.5	55
62	Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. International Journal of Biological Macromolecules, 2014, 69, 208-213.	3.6	55
63	Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals. Biomacromolecules, 2016, 17, 2112-2119.	2.6	55
64	Highly Stable Metal Hydrous Oxide Colloids by Inorganic Polycondensation in Suspension. Angewandte Chemie - International Edition, 2003, 42, 3681-3685.	7.2	54
65	THE CHITINOUS NATURE OF FILAMENTS EJECTED BY PHAEOCYSTIS (PRYMNESIOPHYCEAE) 1. Journal of Phycology, 1997, 33, 666-672.	1.0	53
66	Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer, 2003, 44, 1871-1879.	1.8	53
67	Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochimica Acta, 2015, 178, 108-112.	2.6	53
68	Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose, 2015, 22, 3701-3714.	2.4	53
69	Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose, 2018, 25, 3899-3911.	2.4	53
70	The architecture of lipid droplets in the diatom Phaeodactylum tricornutum. Algal Research, 2019, 38, 101415.	2.4	52
71	From "Sunflower-like―Assemblies toward Giant Wormlike Micelles. Langmuir, 2003, 19, 6-9.	1.6	51
72	Nanofibrillar cellulose from Posidonia oceanica: Properties and morphological features. Industrial Crops and Products, 2015, 72, 97-106.	2.5	51

#	Article	IF	CITATIONS
73	Rubber materials from elastomers and nanocellulose powders: filler dispersion and mechanical reinforcement. Soft Matter, 2018, 14, 2638-2648.	1.2	51
74	Pathway of Cytosolic Starch Synthesis in the Model Glaucophyte <i>Cyanophora paradoxa</i> . Eukaryotic Cell, 2008, 7, 247-257.	3.4	49
75	Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions. Cellulose, 2019, 26, 7619-7634.	2.4	49
76	Single crystals of inulin. International Journal of Biological Macromolecules, 1996, 18, 195-204.	3.6	48
77	Synthesis and Characterization of Water-Soluble Amphipatic Polystyrene-Based Dendrigrafts. Macromolecules, 2003, 36, 5776-5783.	2.2	48
78	High Solids Content, Soapâ€Free, Filmâ€Forming Latexes Stabilized by Laponite Clay Platelets. Macromolecular Rapid Communications, 2010, 31, 1874-1880.	2.0	48
79	The plastid division proteins, FtsZ1 and FtsZ2, differ in their biochemical properties and sub-plastidial localization. Biochemical Journal, 2005, 387, 669-676.	1.7	47
80	Synthesis and characterisation of novel nanospheres made from amphiphilic perfluoroalkylthio-β-cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 123-131.	2.0	47
81	Effect of the Polymer Nature on the Structural Organization of Lipid/Polymer Particle Assemblies. Journal of Physical Chemistry B, 2008, 112, 13812-13822.	1.2	47
82	Synthesis of PEDOT Nanoparticles and Vesicles by Dispersion Polymerization in Alcoholic Media. Macromolecular Rapid Communications, 2006, 27, 1446-1453.	2.0	46
83	Mannosylated Poly(ethylene oxide)-b-Poly(ε-caprolactone) Diblock Copolymers:  Synthesis, Characterization, and Interaction with a Bacterial Lectin. Biomacromolecules, 2007, 8, 2717-2725.	2.6	46
84	B→A Allomorphic Transition in Native Starch and Amylose Spherocrystals Monitored by In Situ Synchrotron X-ray Diffraction. Biomacromolecules, 2010, 11, 76-87.	2.6	45
85	Influence of chemical structure of amphiphilic β-cyclodextrins on their ability to form stable nanoparticles. International Journal of Pharmaceutics, 2002, 242, 301-305.	2.6	44
86	Stabilization of Miniemulsion Droplets by Cerium Oxide Nanoparticles: A Step toward the Elaboration of Armored Composite Latexes. Langmuir, 2012, 28, 6163-6174.	1.6	44
87	One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers. Carbohydrate Polymers, 2020, 229, 115554.	5.1	44
88	Long-term shelf stability of amphiphilic <i>β</i> -cyclodextrin nanosphere suspensions monitored by dynamic light scattering and cryo-transmission electron microscopy. Journal of Microencapsulation, 2004, 21, 607-613.	1.2	43
89	Polymorphism of crystalline complexes of V-amylose with fatty acids. International Journal of Biological Macromolecules, 2018, 119, 555-564.	3.6	43
90	Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate <i>Crypthecodinium cohnii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21126-21130.	3.3	40

#	Article	IF	CITATIONS
91	In Vitro Model Assemblies To Study the Impact of Ligninâ^Carbohydrate Interactions on the Enzymatic Conversion of Xylan. Biomacromolecules, 2009, 10, 2489-2498.	2.6	40
92	Effect of Cyclization of Polystyrene/Polyisoprene Block Copolymers on Their Micellar Morphology. Macromolecular Rapid Communications, 2002, 23, 978-982.	2.0	39
93	Assessment of the encapsulation effect of phenolic compounds from Spirulina sp. LEB-18 on their antifusarium activities. Food Chemistry, 2016, 211, 616-623.	4.2	39
94	Split Crystallization during Debranching of Maltodextrins at High Concentration by Isoamylase. Biomacromolecules, 2004, 5, 1792-1798.	2.6	38
95	Glucose Slows Down the Heat-Induced Aggregation of β-Lactoglobulin at Neutral pH. Journal of Agricultural and Food Chemistry, 2012, 60, 214-219.	2.4	38
96	Development of Nasal Lipid Nanocarriers Containing Curcumin for Brain Targeting. Journal of Alzheimer's Disease, 2017, 59, 961-974.	1.2	38
97	Structure and characterization of the dislocations in tilt grain boundaries between $\hat{I}_{\pm} = 1$ and $\hat{I}_{\pm} = 3$; a high resolution electron microscopy study. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 164, 93-100.	2.6	37
98	Molecular Containers Based on Amphiphilic PS-b-PMVE Dendrigraft Copolymers:Â Topology, Organization, and Aqueous Solution Properties. Journal of the American Chemical Society, 2005, 127, 2990-2998.	6.6	36
99	Characterization of Arabinoxylanâ~'Dehydrogenation Polymer (Synthetic Lignin Polymer) Nanoparticles. Biomacromolecules, 2007, 8, 1236-1245.	2.6	36
100	The Heterotrophic Dinoflagellate <i>Crypthecodinium cohnii</i> Defines a Model Genetic System To Investigate Cytoplasmic Starch Synthesis. Eukaryotic Cell, 2008, 7, 872-880.	3.4	35
101	Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system. Soft Matter, 2012, 8, 9563.	1.2	35
102	Preparation of aqueous anionic poly-(urethane-urea) dispersions: Influence of the nature and proportion of the urethane groups on the dispersion and polymer properties. Journal of Applied Polymer Science, 2004, 94, 700-710.	1.3	34
103	Surface Assisted Nucleation and Growth of Polymer Latexes on Organically-Modified Inorganic Particles. Macromolecular Symposia, 2005, 229, 32-46.	0.4	34
104	Biodistribution of intravenously administered amphiphilic β-cyclodextrin nanospheres. International Journal of Pharmaceutics, 2007, 344, 135-142.	2.6	34
105	Self-assembled biotransesterified cyclodextrins as Artemisinin nanocarriers – I: Formulation, lyoavailability and in vitro antimalarial activity assessment. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 508-517.	2.0	34
106	Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow. Soft Matter, 2016, 12, 1721-1735.	1.2	34
107	pH-Sensitive Interactions between Cellulose Nanocrystals and DOPC Liposomes. Biomacromolecules, 2017, 18, 2918-2927.	2.6	34
108	Temperature-Controlled Star-Shaped Cellulose Nanocrystal Assemblies Resulting from Asymmetric Polymer Grafting. ACS Macro Letters, 2019, 8, 345-351.	2.3	34

#	Article	IF	CITATIONS
109	In Vitro Synthesis of Hyperbranched α-Glucans Using a Biomimetic Enzymatic Toolbox. Biomacromolecules, 2013, 14, 438-447.	2.6	33
110	Periodate Oxidation Followed by NaBH ₄ Reduction Converts Microfibrillated Cellulose into Sterically Stabilized Neutral Cellulose Nanocrystal Suspensions. Langmuir, 2018, 34, 11066-11075.	1.6	33
111	Synthesis of Polymer Latex Particles Decorated with Organically-Modified Laponite Clay Platelets via Emulsion Polymerization. Journal of Nanoscience and Nanotechnology, 2006, 6, 421-431.	0.9	32
112	Distinct Functional Properties of Isoamylase-Type Starch Debranching Enzymes in Monocot and Dicot Leaves. Plant Physiology, 2013, 163, 1363-1375.	2.3	32
113	Transmission Electron Microscopy for the Characterization of Cellulose Nanocrystals. , 0, , .		32
114	Vesicles made of PS-PI cyclic diblock copolymers: In situ freeze-drying cryo-TEM and dynamic light scattering experiments. Faraday Discussions, 2005, 128, 163.	1.6	31
115	Helical Conformation in Crystalline Inclusion Complexes of Vâ€Amylose: A Historical Perspective. Macromolecular Symposia, 2011, 303, 1-9.	0.4	31
116	Function of isoamylaseâ€ŧype starch debranching enzymes <scp>ISA</scp> 1 and <scp>ISA</scp> 2 in the <i><scp>Z</scp>ea mays</i> leaf. New Phytologist, 2013, 200, 1009-1021.	3.5	31
117	PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. New Phytologist, 2019, 221, 356-370.	3.5	31
118	Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydrate Polymers, 2021, 260, 117751.	5.1	31
119	Morphological and structural aspects of the giant starch granules from Phajus grandifolius. Journal of Structural Biology, 2006, 154, 100-110.	1.3	30
120	Designing Organic/Inorganic Colloids by Heterophase Polymerization. Macromolecular Symposia, 2007, 248, 213-226.	0.4	30
121	lαÂ→Âlβ transition of cellulose under ultrasonic radiation. Cellulose, 2013, 20, 597-603.	2.4	30
122	Self-Assembly of Maltoheptaose- <i>block</i> -Polystyrene into Micellar Nanoparticles and Encapsulation of Gold Nanoparticles. Langmuir, 2013, 29, 15224-15230.	1.6	30
123	Chitin nanocrystals as Pickering stabilizer for O/W emulsions: Effect of the oil chemical structure on the emulsion properties. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111604.	2.5	30
124	Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules. Journal of Synchrotron Radiation, 2010, 17, 743-750.	1.0	29
125	Transmission electron microscopy of cellulose. Part 2: technical and practical aspects. Cellulose, 2019, 26, 17-34.	2.4	29
126	Synthesis of oily coreâ€hybrid shell nanocapsules through interfacial free radical copolymerization in miniemulsion: Droplet formation and nucleation. Journal of Polymer Science Part A, 2010, 48, 593-603.	2.5	28

#	Article	IF	CITATIONS
127	Self-Assembly of an Amphiphilic Iron(III) Chelator: Mimicking Iron Acquisition in Marine Bacteria. Angewandte Chemie - International Edition, 2005, 44, 2580-2582.	7.2	27
128	In-situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydrate Polymers, 2015, 126, 32-39.	5.1	27
129	Poly(ethylene glycol) Hydroxystearate-Based Nanosized Emulsions: Effect of Surfactant Concentration on Their Formation and Ability to Solubilize Quercetin. Journal of Biomedical Nanotechnology, 2012, 8, 202-210.	0.5	26
130	Diversity of potential hydrogen bonds in cellulose I revealed by molecular dynamics simulation. Cellulose, 2014, 21, 897-908.	2.4	26
131	Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties. Materials Science and Engineering C, 2019, 105, 110044.	3.8	26
132	Dislocations stopped by the Î \pounds = 9 (122) grain boundary in Si. An HREM study of thermal activation. Journal De Physique, 1989, 50, 2525-2540.	1.8	26
133	Micellar Aggregation in Blends of Linear and Cyclic Poly(styrene-b-isoprene) Diblock Copolymers. Langmuir, 2005, 21, 9085-9090.	1.6	25
134	Single Crystals of Vâ€Amylose Inclusion Complexes. Macromolecular Symposia, 2008, 273, 1-8.	0.4	25
135	Origin of the Limited α-Amylolysis of Debranched Maltodextrins Crystallized in the A Form: A TEM Study on Model Substrates. Biomacromolecules, 2004, 5, 119-125.	2.6	24
136	A-Type Crystals from Dilute Solutions of Short Amylose Chains. Biomacromolecules, 2010, 11, 3049-3058.	2.6	24
137	Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydrate Polymers, 2015, 131, 1-8.	5.1	24
138	Miscellaneous nanoaggregates made of β-CD esters synthesised by an enzymatic pathway. International Journal of Pharmaceutics, 2007, 344, 26-32.	2.6	23
139	Crystalline Structure in Starch. , 2015, , 61-90.		23
140	Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency. Carbohydrate Polymers, 2020, 240, 116342.	5.1	23
141	Plasticity of a silicon bicrystal: a HREM study. Microscopy Microanalysis Microstructures, 1990, 1, 395-404.	0.4	23
142	Aqueous Self-Assembly of Polystyrene Chains End-Functionalized with β-Cyclodextrin. Biomacromolecules, 2009, 10, 449-453.	2.6	22
143	Influence of amylopectin structure and degree of phosphorylation on the molecular composition of potato starch lintners. Biopolymers, 2014, 101, 257-271.	1.2	22
144	Influence of the maturation time on the physico-chemical properties of nanocellulose and associated constituents isolated from pseudostems of banana plant c.v. Valery. Industrial Crops and Products, 2016, 83, 551-560.	2.5	22

#	Article	IF	CITATIONS
145	Polyglucosan body structure in Lafora disease. Carbohydrate Polymers, 2020, 240, 116260.	5.1	22
146	Synthesis of composite latex particles filled with silica. Macromolecular Symposia, 2001, 169, 89-96.	0.4	21
147	Convergent Evolution of Polysaccharide Debranching Defines a Common Mechanism for Starch Accumulation in Cyanobacteria and Plants. Plant Cell, 2013, 25, 3961-3975.	3.1	21
148	Characterization of hyperbranched glycopolymers produced in vitro using enzymes. Analytical and Bioanalytical Chemistry, 2014, 406, 1607-1618.	1.9	21
149	Colloidal systems made of biotransesterified α, β and γ cyclodextrins grafted with C10 alkyl chains. Materials Science and Engineering C, 2009, 29, 458-462.	3.8	20
150	From gold porphyrins to gold nanoparticles: catalytic nanomaterials for glucose oxidation. Nanoscale, 2014, 6, 8556-8560.	2.8	20
151	On the origins of the elasticity of cellulose nanofiber nanocomposites and nanopapers: a micromechanical approach. RSC Advances, 2016, 6, 47258-47271.	1.7	20
152	Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catalysis Science and Technology, 2018, 8, 4030-4043.	2.1	20
153	Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems. Food Hydrocolloids, 2021, 119, 106856.	5.6	20
154	Morphology and Structure of Crystalline Polysaccharides: Some Recent Studies. Macromolecular Symposia, 2005, 229, 66-71.	0.4	19
155	Impact of full range of amylose contents on the architecture of starch granules*. International Journal of Biological Macromolecules, 2016, 89, 305-318.	3.6	19
156	Self-Assembly of Amphiphilic Biotransesterified β-Cyclodextrins: Supramolecular Structure of Nanoparticles and Surface Properties. Langmuir, 2017, 33, 7917-7928.	1.6	19
157	Progress in Developing Amphiphilic Cyclodextrin-Based Nanodevices for Drug Delivery. Current Topics in Medicinal Chemistry, 2014, 14, 526-541.	1.0	19
158	Physicochemical Characterization of α-, β-, and γ-Cyclodextrins Bioesterified with Decanoate Chains Used As Building Blocks of Colloidal Nanoparticles. Biomacromolecules, 2011, 12, 3031-3038.	2.6	18
159	Structural Aspects in Semicrystalline Samples of the Mannan II Family. Biomacromolecules, 2005, 6, 324-332.	2.6	17
160	A-Amylose Single Crystals:Â Unit Cell Refinement from Synchrotron Radiation Microdiffraction Data. Macromolecules, 2006, 39, 3704-3706.	2.2	17
161	Monodisperse Nanoparticles from Self-Assembling Amphiphilic Cyclodextrins: Modulable Tools for the Encapsulation and Controlled Release of Pharmaceuticals. Medicinal Chemistry, 2012, 8, 524-532.	0.7	17
162	Inline Coupling of Electrokinetic Preconcentration Method to Taylor Dispersion Analysis for Size-Based Characterization of Low-UV-Absorbing Nanoparticles. Analytical Chemistry, 2018, 90, 2493-2500.	3.2	17

#	Article	IF	CITATIONS
163	In Vitro Synthesis and Crystallization of \hat{l}^2 -1,4-Mannan. Biomacromolecules, 2019, 20, 846-853.	2.6	17
164	Tracking sulfur and phosphorus within single starch granules using synchrotron X-ray microfluorescence mapping. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 113-119.	1.1	16
165	Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles. Materials Science and Engineering C, 2015, 51, 167-173.	3.8	16
166	Microstructural and mechanical properties of biocomposites made of native starch granules and wood fibers. Composites Science and Technology, 2019, 182, 107755.	3.8	16
167	Deletion of BSG1 in Chlamydomonas reinhardtii leads to abnormal starch granule size and morphology. Scientific Reports, 2019, 9, 1990.	1.6	16
168	Vinyltriethoxysilane-functionalized starch nanocrystals as Pickering stabilizer in emulsion polymerization of acrylic monomers. Application in nanocomposites and pressure-sensitive adhesives. Journal of Colloid and Interface Science, 2020, 578, 533-546.	5.0	16
169	Crystal and molecular structure of V-amylose complexed with ibuprofen. Carbohydrate Polymers, 2021, 261, 117885.	5.1	16
170	Efficient size control of amphiphilic cyclodextrin nanoparticles through a statistical mixture design methodology. Journal of Pharmacy and Pharmaceutical Sciences, 2005, 8, 593-601.	0.9	16
171	Hybrid Organic-Inorganic Colloids with a Core-Corona Structure: A Transmission Electron Microscopy Investigation. Macromolecular Symposia, 2005, 226, 279-288.	0.4	15
172	Self-assembled biotransesterified cyclodextrins as potential Artemisinin nanocarriers. II: In vitro behavior toward the immune system and in vivo biodistribution assessment of unloaded nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 683-694.	2.0	15
173	Expression of <i><scp><i>Escherichia coli</i></scp></i> glycogen branching enzyme in an <i>Arabidopsis</i> mutant devoid of endogenous starch branching enzymes induces the synthesis of starchâ€like polyglucans. Plant, Cell and Environment, 2016, 39, 1432-1447.	2.8	15
174	Characterization of Function of the GlgA2 Glycogen/Starch Synthase in <i>Cyanobacterium</i> sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation. Plant Physiology, 2016, 171, 1879-1892.	2.3	15
175	Lipid-based nanocarrier for quercetin delivery: system characterization and molecular interactions studies. Drug Development and Industrial Pharmacy, 2016, 42, 1165-1173.	0.9	15
176	Morphology and structure of A-amylose single crystals. Polymer, 2011, 52, 2198-2205.	1.8	14
177	Structural changes on polymeric nanoparticles induced by hydrophobic drug entrapment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 238-249.	2.3	13
178	Macromolecular structure and film properties of enzymatically-engineered high molar mass dextrans. Carbohydrate Polymers, 2018, 181, 337-344.	5.1	12
179	Pharmacokinetic study of intravenously administered artemisinin-loaded surface-decorated amphiphilic Î ³ -cyclodextrin nanoparticles. Materials Science and Engineering C, 2020, 106, 110281.	3.8	12
180	Polymorphism of V-amylose cocrystallized with aliphatic diols. Polymer, 2021, 213, 123302.	1.8	12

#	Article	IF	CITATIONS
181	Interaction between dislocations and Î \pounds = 51 and Î \pounds = 19 tilt grain boundaries in germanium: Study by in-situ, TEM and HREM. Microscopy Microanalysis Microstructures, 1993, 4, 221-237.	0.4	12
182	Intra-Sample Heterogeneity of Potato Starch Reveals Fluctuation of Starch-Binding Proteins According to Granule Morphology. Plants, 2019, 8, 324.	1.6	11
183	Honeycomb Organization of Chitin Nanocrystals (ChNCs) in Nanocomposite Films of UV-Cured Waterborne Acrylated Epoxidized Soybean Oil Emulsified with ChNCs. Biomacromolecules, 2021, 22, 3780-3790.	2.6	11
184	Physicochemical and morphological characterizations of glyceryl tristearate/castor oil nanocarriers prepared by the solvent diffusion method. Journal of the Brazilian Chemical Society, 2012, 23, 1972-1981.	0.6	10
185	Crystallite orientation maps in starch granules from polarized Raman spectroscopy (PRS) data. Carbohydrate Polymers, 2016, 154, 70-76.	5.1	10
186	Effectiveness of thermo-compression for manufacturing native starch bulk materials. Journal of Materials Science, 2016, 51, 5146-5159.	1.7	9
187	Crystallography of polysaccharides: Current state and challenges. Current Opinion in Chemical Biology, 2022, 70, 102183.	2.8	9
188	New nanoparticles obtained by co-assembly of amphiphilic cyclodextrins and nonlamellar single-chain lipids: Preparation and characterization. International Journal of Pharmaceutics, 2017, 531, 444-456.	2.6	8
189	Layered organization of anisometric cellulose nanocrystals and beidellite clay particles accumulated near the membrane surface during cross-flow ultrafiltration: In situ SAXS and ex situ SEM/WAXD characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124030.	2.3	8
190	Competing Molecular Packing of Blocks in a Lamella-Forming Carbohydrate- <i>block</i> -poly(3-hexylthiophene) Copolymer. Macromolecules, 2020, 53, 9054-9064.	2.2	8
191	Temperature-triggered formation of a cellulose II nanocrystal network through regioselective derivatization. Nanoscale, 2021, 13, 6447-6460.	2.8	8
192	Hybrid levan–Ag/AgCl nanoparticles produced by UV-irradiation: properties, antibacterial efficiency and application in bioactive poly(vinyl alcohol) films. RSC Advances, 2021, 11, 38990-39003.	1.7	8
193	Twin-screw extrusion for the production of nanocellulose-PVA gels with a high solid content. Carbohydrate Polymers, 2022, 286, 119308.	5.1	8
194	Single Crystals of Vâ€Amylose Complexed with Bicyclic Organic Compounds. Macromolecular Symposia, 2019, 386, 1900007.	0.4	7
195	Crosslinkable dextrin-coated latex via surfactant-free emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127776.	2.3	7
196	Surface free energy of films of alkali-treated cellulose microfibrils from banana rachis. Composite Interfaces, 2012, 19, 29-37.	1.3	6
197	Transmission electron microscopy of cellulose. Part 1: historical perspective. Cellulose, 2019, 26, 5-15.	2.4	6
198	Recent Advances in Electron Microscopy of Carbohydrate Nanoparticles. Frontiers in Chemistry, 2022, 10, 835663.	1.8	6

12

#	Article	IF	CITATIONS
199	Structural transformation of the (233)[011], σ[dbnd]11 tilt grain boundary in silicon. Philosophical Magazine Letters, 1994, 69, 185-188.	0.5	5
200	NegFluo, a Fast and Efficient Method to Determine Starch Granule Size and Morphology In Situ in Plant Chloroplasts. Frontiers in Plant Science, 2019, 10, 1075.	1.7	5
201	Manufacturing of starch-based materials using ultrasonic compression moulding (UCM): toward a structural application. Heliyon, 2021, 7, e06482.	1.4	5
202	A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy and Fuels, 2021, 5, 4710-4723.	2.5	5
203	Hierarchical Selfâ€Assembly of Amphiphilic β―C â€Clycosylbarbiturates into Multiresponsive Alginateâ€Like Supramolecular Hydrogel Fibers and Vesicle Hydrogel. Chemistry - A European Journal, 2021, 27, 16716-16721.	1.7	5
204	Nanoscale Measurement of Stress and Strain by Quantitative High-Resolution Electron Microscopy. Materials Science Forum, 2005, 482, 39-44.	0.3	4
205	Ultrafine heat-induced structural perturbations of bone mineral at the individual nanocrystal level. Acta Biomaterialia, 2018, 73, 500-508.	4.1	4
206	Synthesis and magnetic manipulation of hybrid nanobeads based on Fe3O4 nanoclusters and hyaluronic acid grafted with an ethylene glycol-based copolymer. Applied Surface Science, 2020, 510, 145354.	3.1	4
207	Biobased nucleation agents for poly-L-(lactic acid) — Effect on crystallization, rheological and mechanical properties. International Journal of Biological Macromolecules, 2022, 218, 588-600.	3.6	4
208	Effect of Aluminum on the Formation of Silver Metal Quantum Dots in Sol–Gel Derived Alumino-Silicate Glass Film. Journal of Nanoscience and Nanotechnology, 2006, 6, 3399-3403.	0.9	3
209	Nanodispersion of Polybutadiene in Polystyrene through Controlled "Grafting from―Free Radical Polymerization Using a Diphenylmethyl Type Radical. Macromolecules, 1998, 31, 2697-2698.	2.2	2
210	TEM characterization of organic nanocrystals grown in sol–gel thin films. Journal of Nanoparticle Research, 2008, 10, 129-139.	0.8	2
211	From Molecular to Nanostructured Iron Complexes of Amphiphilic Chelators Based on 8-Hydroxyquinoline Subunits - Evidence of Self-Assembled Edifices Mimicking Siderophores from Marine Bacteria. European Journal of Inorganic Chemistry, 2009, 2009, 86-92.	1.0	2
212	Crystal and molecular structure of V-amylose complexed with butan-1-ol. Polymer, 2022, 243, 124651.	1.8	2
213	Production of Bacterial Cellulose: Use of a New Strain of Microorganism. Materials and Energy, 2014, , 105-122.	2.5	1
214	Etude M.E.H.R. de la martensite [MATH] thermique dans un alliage Fe-Mn-Si-Cr-Ni à mémoire de forme. European Physical Journal Special Topics, 1994, 04, C3-175-C3-180.	0.2	1
215	Topological defects in polycrystalline hexosomes from β-cyclodextrin fatty esters. Soft Matter, 2022, 18, 2028-2038.	1.2	1
216	H.R.E.M. observation of thermally induced ε-martensite plates in a Fe-Mn-Si-Cr-Ni shape memory alloy. European Physical Journal Special Topics, 1993, 03, C7-545-C7-548.	0.2	0

#	Article	IF	CITATIONS
217	Highly Stable Metal Hydrous Oxide Colloids by Inorganic Polycondensation in Suspension ChemInform, 2003, 34, no.	0.1	0