Maria Luz Rodriguez-Mendez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066089/publications.pdf

Version: 2024-02-01

141 papers 5,126 citations

57758 44 h-index 63 g-index

143 all docs 143 docs citations

143 times ranked 3994 citing authors

#	Article	IF	Citations
1	Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness. Analytica Chimica Acta, 2010, 663, 91-97.	5.4	161
2	Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sensors and Actuators B: Chemical, 2006, 118, 448-453.	7.8	107
3	Sensors based on double-decker rare earth phthalocyanines. Advances in Colloid and Interface Science, 2005, 116, 1-11.	14.7	106
4	Langmuir–Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste. Sensors and Actuators B: Chemical, 2003, 95, 357-365.	7.8	105
5	E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines, perylene derivatives and conducting polymers: Discrimination capability towards red wines elaborated with different varieties of grapes. Sensors and Actuators B: Chemical, 2006, 115, 54-61.	7.8	105
6	Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants. Sensors, 2011, 11, 1328-1344.	3.8	102
7	Monitoring of the ageing of red wines in oak barrels by means of an hybrid electronic tongue. Analytica Chimica Acta, 2006, 563, 229-237.	5.4	99
8	Electronic nose based on conducting polymers for the quality control of the olive oil aroma. Analytica Chimica Acta, 2001, 432, 283-292.	5.4	98
9	Evaluation of the polyphenolic content of extra virgin olive oils using an array of voltammetric sensors. Electrochimica Acta, 2008, 53, 5867-5872.	5. 2	91
10	Analysis of saffron volatile fraction by TD–GC–MS and e-nose. European Food Research and Technology, 2006, 223, 96-101.	3.3	90
11	Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochimica Acta, 2011, 56, 8919-8925.	5.2	86
12	Monitoring the aging of beers using a bioelectronic tongue. Food Control, 2012, 25, 216-224.	5 . 5	83
13	Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red wines. Electrochimica Acta, 2004, 49, 5177-5185.	5.2	82
14	Fusion of Three Sensory Modalities for the Multimodal Characterization of Red Wines. IEEE Sensors Journal, 2004, 4, 348-354.	4.7	82
15	Extended Hýckel molecular orbital model for lanthanide bisphthalocyanine complexes. Journal of Molecular Structure, 1995, 356, 49-62.	3. 6	80
16	Biogenic amines and fish freshness assessment using a multisensor system based on voltammetric electrodes. Comparison between CPE and screen-printed electrodes. Electrochimica Acta, 2009, 54, 7033-7041.	5 . 2	80
17	Array of sensors based on conducting polymers for the quality control of the aroma of the virgin olive oil. Sensors and Actuators B: Chemical, 2000, 69, 276-282.	7.8	79
18	On the effect of ammonia and wet atmospheres on the conducting properties of different lutetium bisphthalocyanine thin films. Thin Solid Films, 2008, 516, 9012-9019.	1.8	79

#	Article	IF	CITATIONS
19	Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths. Sensors and Actuators B: Chemical, 2003, 93, 153-158.	7.8	78
20	Using an e-tongue based on voltammetric electrodes to discriminate among red wines aged in oak barrels or aged using alternative methods. Electrochimica Acta, 2007, 52, 2588-2594.	5.2	77
21	Prediction of bitterness and alcoholic strength in beer using an electronic tongue. Food Chemistry, 2010, 123, 642-646.	8.2	76
22	Evaluation of oxygen exposure levels and polyphenolic content of red wines using an electronic panel formed by an electronic nose and an electronic tongue. Food Chemistry, 2014, 155, 91-97.	8.2	76
23	Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants. Biosensors and Bioelectronics, 2011, 26, 2513-2519.	10.1	75
24	Array of voltammetric sensors for the discrimination of bitter solutions. Sensors and Actuators B: Chemical, 2004, 103, 145-152.	7.8	69
25	Potential application of electronic nose technology in brewery. Trends in Food Science and Technology, 2011, 22, 165-174.	15.1	69
26	Monitoring of evolution during red wine aging in oak barrels and alternative method by means of an electronic panel test. Food Research International, 2012, 45, 244-249.	6.2	67
27	Langmuir–Blodgett and Langmuir–Schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors:. Applied Surface Science, 2005, 246, 304-312.	6.1	65
28	Nanostructured thin films based on phthalocyanines: electrochromic displays and sensors. Journal of Porphyrins and Phthalocyanines, 2009, 13, 606-615.	0.8	62
29	Enzyme sensor based on carbon nanotubes/cobalt(II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sensors and Actuators B: Chemical, 2013, 177, 138-144.	7.8	62
30	Voltammetric sensor array based on conducting polymer-modified electrodes for the discrimination of liquids. Electrochimica Acta, 2004, 49, 4543-4551.	5.2	61
31	Application of an electronic tongue to study the effect of the use of pieces of wood and micro-oxygenation in the aging of red wine. Electrochimica Acta, 2010, 55, 6782-6788.	5.2	61
32	Modified carbon paste electrodes for discrimination of vegetable oils. Sensors and Actuators B: Chemical, 2005, 111-112, 403-409.	7.8	60
33	Electronic tongue based on voltammetric electrodes modified with materials showing complementary electroactive properties. Applications. Mikrochimica Acta, 2008, 163, 23-31.	5.0	58
34	Novel method based on carbon paste electrodes for the evaluation of bitterness in extra virgin olive oils. Sensors and Actuators B: Chemical, 2007, 121, 567-575.	7.8	54
35	Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosensors and Bioelectronics, 2014, 57, 276-283.	10.1	54
36	Characterization of evaporated trivalent and tetravalent phthalocyanines thin films: different degree of organization. Applied Surface Science, 2005, 246, 327-333.	6.1	53

#	Article	IF	CITATIONS
37	Evaluation of red wines antioxidant capacity by means of a voltammetric e-tongue with an optimized sensor array. Electrochimica Acta, 2014, 120, 180-186.	5.2	53
38	Spectroscopic Properties of Langmuirâ [*] Blodgett Films of Lanthanide Bis(phthalocyanine)s Exposed to Volatile Organic Compounds. Sensing Applications. Langmuir, 2002, 18, 9560-9565.	3.5	52
39	Lutetium bisphthalocyanine thin films as sensors for volatile organic components (VOCs) of aromas. Sensors and Actuators B: Chemical, 1999, 58, 544-551.	7.8	51
40	Screening analysis of beer ageing using near infrared spectroscopy and the Successive Projections Algorithm for variable selection. Talanta, 2012, 89, 286-291.	5 . 5	51
41	Optimized architecture for Tyrosinase-containing Langmuir–Blodgett films to detect pyrogallol. Journal of Materials Chemistry, 2011, 21, 4995.	6.7	50
42	New insights into sensors based on radical bisphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1159-1167.	0.8	49
43	Iron phthalocyanine in non-aqueous medium forming layer-by-layer films: growth mechanism, molecular architecture and applications. Physical Chemistry Chemical Physics, 2010, 12, 3972.	2.8	48
44	Beer discrimination using a portable electronic tongue based on screen-printed electrodes. Journal of Food Engineering, 2015, 157, 57-62.	5.2	48
45	Analysis of the influence of the type of closure in the organoleptic characteristics of a red wine by using an electronic panel. Food Chemistry, 2011, 129, 589-594.	8.2	43
46	Classification of non-alcoholic beer based on aftertaste sensory evaluation by chemometric tools. Expert Systems With Applications, 2012, 39, 4315-4327.	7.6	42
47	Array of sensors based on lanthanide bisphtahlocyanine Langmuir–Blodgett films for the detection of olive oil aroma. Sensors and Actuators B: Chemical, 2001, 77, 437-442.	7.8	41
48	Immobilization of lutetium bisphthalocyanine in nanostructured biomimetic sensors using the LbL technique for phenol detection. Biosensors and Bioelectronics, 2011, 26, 4715-4719.	10.1	41
49	Langmuirâ^Blodgett Films of Bis(octakispropyloxy) Samarium Bisphthalocyanine. Spectroscopic and Gas-Sensing Properties. Langmuir, 2001, 17, 5004-5010.	3.5	39
50	Spectroelectrochemical characterisation of Langmuir–Schaefer films of heteroleptic phthalocyanine complexes. Potential applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 574-582.	4.7	39
51	Detection of catechol using mixed Langmuir–Blodgett films of a phospholipid and phthalocyanines as voltammetric sensors. Analyst, The, 2010, 135, 2591.	3.5	39
52	Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles. Analytica Chimica Acta, 2015, 853, 572-578.	5.4	39
53	Crown-ether lutetium bisphthalocyanine Langmuir-Blodgett films as gas sensors. Sensors and Actuators B: Chemical, 1996, 31, 51-55.	7.8	38
54	Electronic and bioelectronic tongues, two promising analytical tools for the quality evaluation of non alcoholic beer. Trends in Food Science and Technology, 2011, 22, 245-248.	15.1	38

#	Article	IF	CITATIONS
55	Fish Freshness Monitoring Using an E-Tongue Based on Polypyrrole Modified Screen-Printed Electrodes. IEEE Sensors Journal, 2013, 13, 2548-2554.	4.7	38
56	Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 360-365.	5.6	38
57	Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. LWT - Food Science and Technology, 2020, 118, 108785.	5.2	37
58	The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. LWT - Food Science and Technology, 2015, 62, 940-947.	5.2	36
59	Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles. Analytica Chimica Acta, 2002, 455, 41-47.	5.4	35
60	Voltammetric sensor based on electrodeposited molecularly imprinted chitosan film on BDD electrodes for catechol detection in buffer and in wine samples. Materials Science and Engineering C, 2020, 110, 110667.	7.3	35
61	Study of singlet excited state absorption spectrum of lutetium bisphthalocyanine using the femtosecond Z-scan technique. Chemical Physics Letters, 2012, 531, 173-176.	2.6	34
62	Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using CoPc derivatives. Sensors and Actuators B: Chemical, 2012, 166-167, 457-466.	7.8	34
63	Improvement of the synthesis of lutetium bisphthalocyanine using the Taguchi method. Analyst, The, 2000, 125, 341-346.	3.5	33
64	Spectroscopic and electrochemical properties of thin solid films of yttrium bisphthalocyanine. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 965-973.	0.1	32
65	New Hybrid Films Based on Cellulose and Hydroxygallium Phthalocyanine. Synergetic Effects in the Structure and Properties. Langmuir, 2007, 23, 3712-3722.	3.5	31
66	Multisensor system based on bisphthalocyanine nanowires for the detection of antioxidants. Electrochimica Acta, 2012, 68, 88-94.	5.2	31
67	Impedimetric electronic tongue based on nanocomposites for the analysis of red wines. Improving the variable selection method. Sensors and Actuators B: Chemical, 2018, 277, 365-372.	7.8	30
68	Electrochemical Characterization of Two Perylenetetracarboxylic Diimides:Â Langmuirâ^'Blodgett Films and Carbon Paste Electrodes. Chemistry of Materials, 2004, 16, 358-364.	6.7	29
69	Films of Lutetium Bisphthalocyanine Nanowires As Electrochemical Sensors. Langmuir, 2010, 26, 19217-19224.	3.5	28
70	Application of a GA–PLS strategy for variable reduction of electronic tongue signals. Sensors and Actuators B: Chemical, 2013, 183, 52-57.	7.8	28
71	Promoting laccase sensing activity for catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces. Bioelectrochemistry, 2020, 132, 107407.	4.6	28
72	Voltammetric Sensor Based on Molecularly Imprinted Chitosan-Carbon Nanotubes Decorated with Gold Nanoparticles Nanocomposite Deposited on Boron-Doped Diamond Electrodes for Catechol Detection. Materials, 2020, 13, 688.	2.9	28

#	Article	IF	CITATIONS
73	Silver Nanowires as Electron Transfer Mediators in Electrochemical Catechol Biosensors. Sensors, 2021, 21, 899.	3.8	28
74	Taking Advantage of Electrostatic Interactions To Grow Langmuirâ^'Blodgett Films Containing Multilayers of the Phospholipid Dipalmitoylphosphatidylglycerol. Langmuir, 2009, 25, 13062-13070.	3.5	27
75	Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying. Journal of Alloys and Compounds, 2017, 716, 46-55.	5.5	27
76	Application of multi-way analysis to UV–visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation. Analytica Chimica Acta, 2012, 719, 43-51.	5.4	26
77	A new strategy for corrosion protection of porous stainless steel using polypyrrole films. Journal of Materials Science and Technology, 2020, 37, 85-95.	10.7	25
78	Biosensors Platform Based on Chitosan/AuNPs/Phthalocyanine Composite Films for the Electrochemical Detection of Catechol. The Role of the Surface Structure. Sensors, 2020, 20, 2152.	3.8	25
79	Langmuir—Blodgett films of lanthanide diphthalocyanines as environmental tobacco smoke sensors. Sensors and Actuators B: Chemical, 1994, 18, 89-92.	7.8	24
80	Langmuirâ^Blodgett Mixed Films of Titanyl(IV) Pthalocyanine and Arachidic Acid. Molecular Orientation and Film Structure. Langmuir, 2003, 19, 3747-3751.	3.5	24
81	Electronic tongue formed by sensors and biosensors containing phthalocyanines as electron mediators: Application to the analysis of red grapes. Journal of Porphyrins and Phthalocyanines, 2014, 18, 76-86.	0.8	24
82	SPME coupled to an array of MOS sensors. Sensors and Actuators B: Chemical, 2006, 120, 278-287.	7.8	23
83	Multivariate calibration transfer between two different types of multisensor systems. Sensors and Actuators B: Chemical, 2017, 246, 994-1000.	7.8	23
84	Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines. Analytica Chimica Acta, 2014, 851, 95-102.	5. 4	22
85	Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films. Sensors, 2018, 18, 2716.	3.8	22
86	Analysis of musts and wines by means of a bio-electronic tongue based on tyrosinase and glucose oxidase using polypyrrole/gold nanoparticles as the electron mediator. Food Chemistry, 2019, 289, 751-756.	8.2	22
87	Mimetic biosensors composed by layer-by-layer films of phospholipid, phthalocyanine and silver nanoparticles to polyphenol detection. Sensors and Actuators B: Chemical, 2016, 233, 654-666.	7.8	21
88	<i>In situ</i> synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications. Biomaterials Science, 2019, 7, 2511-2519.	5.4	21
89	Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol. Beilstein Journal of Nanotechnology, 2015, 6, 2052-2061.	2.8	20
90	Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors. Beilstein Journal of Nanotechnology, 2016, 7, 1948-1959.	2.8	20

#	Article	IF	Citations
91	Molecular stacking and emission properties in Langmuir?Blodgett films of two alkyl substituted perylene tetracarboxylic diimides. Organic Electronics, 2004, 5, 107-114.	2.6	19
92	Array of biosensors for discrimination of grapes according to grape variety, vintage and ripeness. Analytica Chimica Acta, 2016, 947, 16-22.	5.4	19
93	A.c. conductivity of gas-sensitive Langmuir-Blodgett films of ytterbium bisphthalocyanine. Thin Solid Films, 1996, 284-285, 888-890.	1.8	18
94	Subphthalocyanines as electron mediators in biosensors based on phenol oxidases: Application to the analysis of red wines. Electrochimica Acta, 2017, 255, 239-247.	5.2	18
95	Nanocomposites of conductive polymers and nanoparticles deposited on porous material as a strategy to improve its corrosion resistance. Surface and Coatings Technology, 2020, 403, 126395.	4.8	17
96	Flavour characteristics of Spanish and Iranian saffron analysed by electronic tongue. Quality Assurance and Safety of Crops and Foods, 2016, 8, 359-368.	3.4	16
97	Array of lutetium bisphthalocyanine sensors for the detection of trimethylamine. Materials Science and Engineering C, 1999, 8-9, 565-568.	7.3	15
98	Influence of electrochemical deposition parameters on the performance of poly-3-methyl thiophene and polyaniline sensors for virgin olive oils. Sensors and Actuators B: Chemical, 2004, 100, 60-64.	7.8	15
99	Advantages of the Biomimetic Nanostructured Films as an Immobilization Method vs. the Carbon Paste Classical Method. Catalysts, 2012, 2, 517-531.	3.5	15
100	Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology. Journal of Materials Science, 2007, 42, 7227-7238.	3.7	14
101	A new generation of hollow polymeric microfibers produced by gas dissolution foaming. Journal of Materials Chemistry B, 2020, 8, 8820-8829.	5.8	14
102	Use of an array of metal oxide sensors coupled with solid phase microextraction for characterisation of wines. Sensors and Actuators B: Chemical, 2008, 132, 125-133.	7.8	13
103	Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy. Sensors, 2016, 16, 1654.	3.8	13
104	An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts. Sensors, 2015, 15, 29233-29249.	3.8	12
105	Nanoscale Au–In Alloy–Oxide Core–Shell Particles as Electrocatalysts for Efficient Hydroquinone Detection. Journal of Physical Chemistry C, 2015, 119, 25100-25107.	3.1	12
106	Electrochemical Sensors Modified with Combinations of Sulfur Containing Phthalocyanines and Capped Gold Nanoparticles: A Study of the Influence of the Nature of the Interaction between Sensing Materials. Nanomaterials, 2019, 9, 1506.	4.1	12
107	Sensing properties of organised films based on a bithiophene derivative. Sensors and Actuators B: Chemical, 2009, 141, 625-633.	7.8	11
108	Improvement of electrocatalytic effect in voltammetric sensors based on phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2016, 20, 413-420.	0.8	11

#	Article	IF	CITATIONS
109	Study of the Foaming Kinetics in Epoxidized Natural Rubber Foams Crosslinked by Electron Beam Irradiation. Macromolecular Chemistry and Physics, 2018, 219, 1800295.	2.2	11
110	Application of Plasma Electrolytic Oxidation Coating on Powder Metallurgy Ti-6Al-4V for Dental Implants. Metals, 2020, 10, 1167.	2.3	10
111	Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles. Frontiers in Chemistry, 2018, 6, 131.	3.6	9
112	Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. Sensors, 2020, 20, 4176.	3.8	9
113	Photophysics, electrochemistry and structure of a pyrazolino [60] fullerene dendrimer in solid molecular films. Synthetic Metals, 2005, 148, 47-52.	3.9	8
114	Combining SERRS and electrochemistry to characterize sensors based on biomembrane mimetic models formed by phospholipids. RSC Advances, 2011, 1, 211.	3.6	8
115	Development of lutetium bisphthalocyanine/carbon nanotube Langmuir-Blodgett films: Sensing properties. Journal of Porphyrins and Phthalocyanines, 2011, 15, 908-917.	0.8	8
116	Multisensor systems based on phthalocyanines for monitoring the quality of grapes. Journal of Porphyrins and Phthalocyanines, 2016, 20, 889-894.	0.8	8
117	Improving the performance of a bioelectronic tongue using silver nanowires: Application to milk analysis. Sensors and Actuators B: Chemical, 2022, 364, 131877.	7.8	8
118	Energy transfer between Langmuir–Blodgett monolayers of Titanylphthalocyanine and Bisneopentyl(imido)perylene. Materials Science and Engineering C, 2002, 22, 161-165.	7.3	7
119	Improved selectivity towards NO2 of phthalocyanine-based chemosensors by means of original indigo/nanocarbons hybrid material. Talanta, 2014, 127, 100-107.	5.5	7
120	Polymeric Foams as the Matrix of Voltammetric Sensors for the Detection of Catechol, Hydroquinone, and Their Mixtures. Journal of Sensors, 2018, 2018, 1-9.	1.1	7
121	Small angle X-ray reflectivity study of langmuir-blodgett films of a peripherally substituted zinc phthalocyanine. Materials Science and Engineering C, 1997, 5, 59-60.	7.3	6
122	Electronic Tongues Purposely Designed for the Organoleptic Characterization of Olive Oils. , 2010, , 525-532.		6
123	Structural and Electrochemical Properties of Lutetium Bis-Octachloro-Phthalocyaninate Nanostructured Films. Application as Voltammetric Sensors. Journal of Nanoscience and Nanotechnology, 2014, 14, 6754-6763.	0.9	6
124	Analysis of grapes and wines using a voltammetric bioelectronic tongue: Correlation with the phenolic and sugar content. , $2014, \dots$		6
125	Enose Lab Made with Vacuum Sampling: Quantitative Applications. Chemosensors, 2022, 10, 261.	3.6	6
126	DTG and DTA studies on sugar derivatives. Thermochimica Acta, 1988, 134, 67-72.	2.7	5

#	Article	IF	CITATIONS
127	Molecular organization of discotic mesogenic cis-dichlorobis(3,4,5-trialkoxyphenylisonitrile)platinum (II) complexes on Langmuir and Langmuir–Blodgett films. Surface Science, 2004, 550, 106-118.	1.9	5
128	Electrochemical quartz crystal microbalance analysis of the oxidation reaction of phenols found in wines at lutetium bisphthalocyanine electrodes. Sensors and Actuators B: Chemical, 2013, 185, 24-31.	7.8	4
129	Electrochemical characterization of dilithium phthalocyanine carbonaceous electrodes. Journal of Porphyrins and Phthalocyanines, 2013, 17, 522-528.	0.8	4
130	Electronic Tongues for the Organoleptic Characterization of Wines. , 2016, , 265-273.		3
131	Electroactivity of a starburst hole-transport material in Langmuir–Blodgett films. Solid state effects and intervalence charge transfer. Physical Chemistry Chemical Physics, 2007, 9, 2266-2273.	2.8	2
132	A different approach for the analysis of grapes: Using the skin as sensing element. Food Research International, 2018, 107, 544-550.	6.2	2
133	Corrosion Properties of a Low-Nickel Austenitic Porous Stainless Steel in Simulated Body Fluids. Corrosion, 2018, 74, 683-693.	1.1	2
134	Improving the Performance of Electrochemical Sensors by Means of Synergy. Combinations of Gold Nanoparticles and Phthalocyanines. Proceedings (mdpi), 2017, 1, .	0.2	1
135	Novel Method for the Identification of the Variety of Grape Using Their Capability to Form Gold Nanoparticles. Beverages, 2018, 4, 26.	2.8	1
136	Spectroscopic characterization and Langmuir-Blodgett films of N,N′-bis(3-aminophenyl)-3,4:9,10-perylenebis (dicarboximide). Materials Science and Engineering C, 1998, 5, 297-299.	7.3	0
137	Combination of an electronic nose, an electronic tongue and an electronic eye for the Analysis of Red Wines aged with alternative methods. , 2007, , .		0
138	Multicomponent Layer-By-Layer Films of Chitosan/Phthalocyanine/AuNPs As Biosensing Platforms. ECS Meeting Abstracts, 2021, MA2021-01, 764-764.	0.0	0
139	Editorial: Electrochemical Sensors and Biosensors in Medical and Pharmaceutical Bioanalysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 533.	4.1	0
140	Development of a Bioelectronic Tongue Modified with Gold Nanoparticles for Dairy Analysis. , 2021, 5,		0
141	Silver Nanomaterials as Electron Mediators in a Bio-Electronic Tongue Dedicated to the Analysis of Milks. The Role of the Aspect Ratio of Nanoparticles vs. Nanowires. , 2021, 5, .		0