Songlin Zuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7066056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation, Characterization, and Antibacterial Activity of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposite. ACS Applied Materials & Interfaces, 2015, 7, 6966-6973.	4.0	462
2	Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material. Fuel Processing Technology, 2009, 90, 994-1001.	3.7	82
3	Evolution of Phosphorus-Containing Groups on Activated Carbons during Heat Treatment. Langmuir, 2017, 33, 3112-3122.	1.6	68
4	One-pot synthesis of 5-hydroxymethylfurfural from carbohydrates using an inexpensive FePO ₄ catalyst. RSC Advances, 2015, 5, 19900-19906.	1.7	59
5	Effects of the heating history of impregnated lignocellulosic material on pore development during phosphoric acid activation. Carbon, 2010, 48, 3293-3295.	5.4	55
6	Green catalytic synthesis of 5-methylfurfural by selective hydrogenolysis of 5-hydroxymethylfurfural over size-controlled Pd nanoparticle catalysts. Catalysis Science and Technology, 2019, 9, 1238-1244.	2.1	54
7	Mesoporous carbon materials prepared from carbohydrates with a metal chloride template. Journal of Materials Chemistry, 2009, 19, 7759.	6.7	49
8	Effects of the crystallinity of lignocellulosic material on the porosity of phosphoric acid-activated carbon. Carbon, 2009, 47, 3578-3580.	5.4	36
9	Investigation of ammonia/steam activation for the scalable production of high-surface area nitrogen-containing activated carbons. Carbon, 2022, 191, 581-592.	5.4	32
10	Low-Cost Preparation of High-Surface-Area Nitrogen-Containing Activated Carbons from Biomass-Based Chars by Ammonia Activation. Industrial & Engineering Chemistry Research, 2020, 59, 7527-7537.	1.8	31
11	Ammonia modification of high-surface-area activated carbons as metal-free electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2018, 263, 465-473.	2.6	27
12	Selective oxidation rapidly decomposes biomass-based activated carbons into graphite-like crystallites. Carbon, 2018, 140, 504-507.	5.4	27
13	The effect of oxygen on the microwave-assisted synthesis of carbon quantum dots from polyethylene glycol. RSC Advances, 2017, 7, 16637-16643.	1.7	26
14	Preparation of multicolored carbon quantum dots using HNO ₃ /HClO ₄ oxidation of graphitized carbon. Journal of Materials Research, 2019, 34, 3428-3438.	1.2	26
15	Efficient Hydrogenation of Xylose and Hemicellulosic Hydrolysate to Xylitol over Ni-Re Bimetallic Nanoparticle Catalyst. Nanomaterials, 2020, 10, 73.	1.9	24
16	Evolution of gaseous products from biomass pyrolysis in the presence of phosphoric acid. Journal of Analytical and Applied Pyrolysis, 2012, 95, 236-240.	2.6	21
17	Photocatalytic Oxidation of 5â€Hydroxymethylfurfural Over Interfacialâ€Enhanced Ag/TiO ₂ Under Visible Light Irradiation. ChemSusChem, 2022, 15, e202102158.	3.6	16
18	Cost-effective preparation of metal-free electrocatalysts by phosphoric acid activation of lignocellulosic materials for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 2811-2822.	3.8	14

Songlin Zuo

#	Article	IF	CITATIONS
19	Interconnected Hollow Si/C Hybrids Engineered by the Carbon Dioxide-Introduced Magnesiothermic Reduction of Biosilica from Reed Plants for Lithium Storage. Energy & Fuels, 2021, 35, 10241-10249.	2.5	11
20	Role of oxidant during phosphoric acid activation of lignocellulosic material. Carbon, 2014, 66, 734-737.	5.4	9
21	Siliconâ€Based Nanorod Anodes by Employing Bacterial Cellulose Derived Carbon Skeleton Towards Lithiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	2.4	9
22	Graphitic crystallite nanomaterials enable the simple and ultrafast synthesis of resorcinol-formaldehyde carbon aerogel monoliths. Carbon, 2022, 194, 220-229.	5.4	6
23	Effect of Zn/ZSM-5 and FePO _{4} Catalysts on Cellulose Pyrolysis. Journal of Chemistry, 2015, 2015, 1-11.	0.9	5
24	Mass Transfer Behavior of Methane in Porous Carbon Materials. AICHE Journal, 0, , e17521.	1.8	3
25	Catalytic performance improved by catalystâ€integration technology and boosting H 2 S catalytic adsorption. Environmental Progress and Sustainable Energy, 0, , e13781.	1.3	1