David S Ginger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065697/publications.pdf Version: 2024-02-01

DAVID S CINCER

#	Article	IF	CITATIONS
1	Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348, 683-686.	6.0	1,833
2	The Evolution of Dip-Pen Nanolithography. Angewandte Chemie - International Edition, 2004, 43, 30-45.	7.2	877
3	Photo-induced halide redistribution in organic–inorganic perovskite films. Nature Communications, 2016, 7, 11683.	5.8	778
4	Highâ€Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solutionâ€Processed Copperâ€Doped Nickel Oxide Holeâ€Transporting Layer. Advanced Materials, 2015, 27, 695-701.	11.1	751
5	Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography. Science, 2002, 296, 1836-1838.	6.0	727
6	Dependence of Fluorescence Intensity on the Spectral Overlap between Fluorophores and Plasmon Resonant Single Silver Nanoparticles. Nano Letters, 2007, 7, 690-696.	4.5	652
7	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 2015, 6, 10030.	5.8	620
8	Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Letters, 2007, 7, 1032-1036.	4.5	590
9	Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 2017, 3, e1700106.	4.7	588
10	Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Letters, 2006, 6, 463-467.	4.5	502
11	The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 2013, 500, 435-439.	13.7	460
12	Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation. ACS Energy Letters, 2016, 1, 438-444.	8.8	452
13	The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano, 2015, 9, 9380-9393.	7.3	451
14	Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nature Photonics, 2018, 12, 355-361.	15.6	408
15	Efficient perovskite solar cells by metal ion doping. Energy and Environmental Science, 2016, 9, 2892-2901.	15.6	372
16	Plasmon-Enhanced Charge Carrier Generation in Organic Photovoltaic Films Using Silver Nanoprisms. Nano Letters, 2010, 10, 1501-1505.	4.5	362
17	Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Physical Review B, 1999, 59, 10622-10629.	1.1	323
18	Charge injection and transport in films of CdSe nanocrystals. Journal of Applied Physics, 2000, 87, 1361-1368.	1.1	308

#	Article	IF	CITATIONS
19	Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy. Nano Letters, 2007, 7, 738-744.	4.5	283
20	Time-resolved electrostatic force microscopy of polymer solar cells. Nature Materials, 2006, 5, 735-740.	13.3	275
21	Quantitative Study of the Effects of Surface Ligand Concentration on CdSe Nanocrystal Photoluminescence. Journal of Physical Chemistry C, 2007, 111, 6220-6227.	1.5	241
22	Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nature Photonics, 2021, 15, 238-244.	15.6	231
23	Spectral Control of Plasmonic Emission Enhancement from Quantum Dots near Single Silver Nanoprisms. Nano Letters, 2010, 10, 2598-2603.	4.5	228
24	Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. ACS Energy Letters, 2018, 3, 2086-2093.	8.8	224
25	Direct-Write Dip-Pen Nanolithography of Proteins on Modified Silicon Oxide Surfaces. Angewandte Chemie - International Edition, 2003, 42, 2309-2312.	7.2	208
26	Suppressed Charge Recombination in Inverted Organic Photovoltaics via Enhanced Charge Extraction by Using a Conductive Fullerene Electron Transport Layer. Advanced Materials, 2014, 26, 6262-6267.	11.1	206
27	Space Charge Limited Current Measurements on Conjugated Polymer Films using Conductive Atomic Force Microscopy. Nano Letters, 2008, 8, 1602-1609.	4.5	200
28	Charge-Carrier Recombination in Halide Perovskites. Chemical Reviews, 2019, 119, 11007-11019.	23.0	197
29	Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chemical Reviews, 2016, 116, 7117-7158.	23.0	189
30	Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu ₂ ZnSn(S,Se) ₄ and increases photovoltaic efficiency. Physical Chemistry Chemical Physics, 2015, 17, 23859-23866.	1.3	185
31	Electrical Scanning Probe Microscopy on Active Organic Electronic Devices. Advanced Materials, 2009, 21, 19-28.	11.1	183
32	Plasmonic Nanoparticle Dimers for Optical Sensing of DNA in Complex Media. Journal of the American Chemical Society, 2010, 132, 9600-9601.	6.6	179
33	Heterogeneity in Polymer Solar Cells: Local Morphology and Performance in Organic Photovoltaics Studied with Scanning Probe Microscopy. Accounts of Chemical Research, 2010, 43, 612-620.	7.6	179
34	Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. Journal of the American Chemical Society, 2019, 141, 4345-4354.	6.6	179
35	The Changing Face of PEDOT:PSS Films: Substrate, Bias, and Processing Effects on Vertical Charge Transport. Journal of Physical Chemistry C, 2008, 112, 7922-7927.	1.5	173
36	Polymer Nanowire/Fullerene Bulk Heterojunction Solar Cells: How Nanostructure Determines Photovoltaic Properties. ACS Nano, 2010, 4, 1861-1872.	7.3	170

#	Article	IF	CITATIONS
37	Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites. Joule, 2019, 3, 3048-3060.	11.7	166
38	Top-Down Meets Bottom-Up: Dip-Pen Nanolithography and DNA-Directed Assembly of Nanoscale Electrical Circuits. Small, 2005, 1, 64-69.	5.2	155
39	Suppressing Efficiency Roll-Off at High Current Densities for Ultra-Bright Green Perovskite Light-Emitting Diodes. ACS Nano, 2020, 14, 6076-6086.	7.3	142
40	The Role of Mesoscopic PCBM Crystallites in Solvent Vapor Annealed Copolymer Solar Cells. ACS Nano, 2009, 3, 627-636.	7.3	140
41	Synthesis and optical properties of cubic gold nanoframes. Nano Research, 2008, 1, 441-449.	5.8	138
42	Reducing Surface Recombination Velocities at the Electrical Contacts Will Improve Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 222-227.	8.8	138
43	Living Templates for the Hierarchical Assembly of Gold Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 2306-2309.	7.2	132
44	Improved Performance from Multilayer Quantum Dot Lightâ€Emitting Diodes via Thermal Annealing of the Quantum Dot Layer. Advanced Materials, 2007, 19, 3371-3376.	11.1	130
45	Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Applied Physics Letters, 2008, 93, .	1.5	130
46	Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Physical Review B, 2000, 61, 2286-2290.	1.1	129
47	Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems. Journal of Physical Chemistry Letters, 2010, 1, 1160-1169.	2.1	127
48	Anion-Dependent Doping and Charge Transport in Organic Electrochemical Transistors. Chemistry of Materials, 2018, 30, 5380-5389.	3.2	125
49	Broadband Absorbing Bulk Heterojunction Photovoltaics Using Low-Bandgap Solution-Processed Quantum Dots. Nano Letters, 2010, 10, 2635-2639.	4.5	123
50	A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms. Advanced Energy Materials, 2014, 4, 1400206.	10.2	118
51	Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, Electron–Hole Reduced Effective Mass, and Band Gap in the Perovskite CH ₃ NH ₃ Pbl ₃ . ACS Photonics, 2016, 3, 1060-1068.	3.2	116
52	Imaging the Evolution of Nanoscale Photocurrent Collection and Transport Networks during Annealing of Polythiophene/Fullerene Solar Cells. Nano Letters, 2009, 9, 2946-2952.	4.5	111
53	Highâ€Dielectric Constant Sideâ€Chain Polymers Show Reduced Nonâ€Geminate Recombination in Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301857.	10.2	110
54	Ag Incorporation with Controlled Grain Growth Enables 12.5% Efficient Kesterite Solar Cell with Open Circuit Voltage Reached 64.2% Shockley–Queisser Limit. Advanced Functional Materials, 2021, 31, 2101927.	7.8	110

#	Article	IF	CITATIONS
55	Photoluminescence Quenching of Single CdSe Nanocrystals by Ligand Adsorption. Nano Letters, 2008, 8, 2585-2590.	4.5	106
56	Electron Accumulation on Metal Nanoparticles in Plasmon-Enhanced Organic Solar Cells. ACS Nano, 2012, 6, 10024-10032.	7.3	106
57	Zr Incorporation into TiO ₂ Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. Journal of Physical Chemistry Letters, 2015, 6, 669-675.	2.1	106
58	Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286.	8.8	106
59	Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion. ACS Nano, 2017, 11, 11488-11496.	7.3	105
60	Photoinduced Hole Transfer Becomes Suppressed with Diminished Driving Force in Polymerâ€Fullerene Solar Cells While Electron Transfer Remains Active. Advanced Functional Materials, 2013, 23, 1238-1249.	7.8	101
61	Triplet formation and decay in conjugated polymer devices. Chemical Physics Letters, 2002, 360, 195-201.	1.2	99
62	B-Site Metal Cation Exchange in Halide Perovskites. ACS Energy Letters, 2017, 2, 1190-1196.	8.8	99
63	Dilution effect for highly efficient multiple-component organic solar cells. Nature Nanotechnology, 2022, 17, 53-60.	15.6	99
64	Scanning Kelvin Probe Imaging of the Potential Profiles in Fixed and Dynamic Planar LECs. Journal of the American Chemical Society, 2007, 129, 15903-15910.	6.6	94
65	Signals for a Transition from Surface to Bulk Emission in Thermal Multifragmentation. Physical Review Letters, 2000, 84, 5971-5974.	2.9	92
66	Plasmon Line Widths of Single Silver Nanoprisms as a Function of Particle Size and Plasmon Peak Position. Journal of Physical Chemistry C, 2007, 111, 18906-18911.	1.5	91
67	Photoswitchable Oligonucleotide-Modified Gold Nanoparticles: Controlling Hybridization Stringency with Photon Dose. Nano Letters, 2012, 12, 2530-2536.	4.5	89
68	Patterning Phase Separation in Polymer Films with Dip-Pen Nanolithography. Journal of the American Chemical Society, 2005, 127, 4564-4565.	6.6	88
69	Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 20810-20816.	1.5	88
70	Sn4+ precursor enables 12.4% efficient kesterite solar cell from DMSO solution with open circuit voltage deficit below 0.30 V. Science China Materials, 2021, 64, 52-60.	3.5	85
71	Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. Organic Electronics, 2012, 13, 2870-2878.	1.4	82
72	Submicrosecond Time Resolution Atomic Force Microscopy for Probing Nanoscale Dynamics. Nano Letters, 2012, 12, 893-898.	4.5	82

#	Article	IF	CITATIONS
73	Concerted Emission and Local Potentiometry of Light-Emitting Electrochemical Cells. ACS Nano, 2010, 4, 2673-2680.	7.3	81
74	ITO Interface Modifiers Can Improve <i>V</i> _{OC} in Polymer Solar Cells and Suppress Surface Recombination. Journal of Physical Chemistry Letters, 2013, 4, 4038-4044.	2.1	78
75	Absence of Photoinduced Charge Transfer in Blends of PbSe Quantum Dots and Conjugated Polymers. ACS Nano, 2009, 3, 1345-1352.	7.3	75
76	Photoinduced Charge Transfer and Polaron Dynamics in Polymer and Hybrid Photovoltaic Thin Films: Organic vs Inorganic Acceptors. Journal of Physical Chemistry C, 2011, 115, 24403-24410.	1.5	74
77	The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 2062-2069.	2.1	74
78	A Reversible Structural Phase Transition by Electrochemically-Driven Ion Injection into a Conjugated Polymer. Journal of the American Chemical Society, 2020, 142, 7434-7442.	6.6	74
79	Anticorrelation between Local Photoluminescence and Photocurrent Suggests Variability in Contact to Active Layer in Perovskite Solar Cells. ACS Nano, 2016, 10, 10258-10266.	7.3	73
80	Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society, 2018, 140, 9996-10008.	6.6	73
81	Fullerene Active Layers for n-Type Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2019, 11, 28138-28144.	4.0	70
82	Plasmonic Enhancement of Raman Scattering from the Organic Solar Cell Material P3HT/PCBM by Triangular Silver Nanoprisms. Journal of Physical Chemistry C, 2011, 115, 20788-20794.	1.5	69
83	Reversibly Reconfigurable Colloidal Plasmonic Nanomaterials. Journal of the American Chemical Society, 2017, 139, 5266-5276.	6.6	66
84	Enhanced Förster energy transfer in organic/inorganic bilayer optical microcavities. Chemical Physics Letters, 2001, 338, 83-87.	1.2	65
85	Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2018, 9, 104-109.	2.1	64
86	Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. ACS Energy Letters, 2018, 3, 2396-2403.	8.8	62
87	Reversible Electrochemical Charging of n-Type Conjugated Polymer Electrodes in Aqueous Electrolytes. Journal of the American Chemical Society, 2021, 143, 14795-14805.	6.6	62
88	Controlling Vertical Morphology within the Active Layer of Organic Photovoltaics Using Poly(3-hexylthiophene) Nanowires and Phenyl-C61-butyric Acid Methyl Ester. ACS Nano, 2011, 5, 3132-3140.	7.3	61
89	Polymer Triplet Energy Levels Need Not Limit Photocurrent Collection in Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 19661-19668.	6.6	61
90	Orientation of Phenylphosphonic Acid Self-Assembled Monolayers on a Transparent Conductive Oxide: A Combined NEXAFS, PM-IRRAS, and DFT Study. Langmuir, 2013, 29, 2166-2174.	1.6	61

#	Article	IF	CITATIONS
91	Ion Exchange Gels Allow Organic Electrochemical Transistor Operation with Hydrophobic Polymers in Aqueous Solution. Advanced Materials, 2020, 32, e2002610.	11.1	61
92	Controlling Film Morphology in Conjugated Polymer:Fullerene Blends with Surface Patterning. Journal of the American Chemical Society, 2008, 130, 15916-15926.	6.6	60
93	Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing Recombination in Organic Photovoltaics. ACS Nano, 2014, 8, 10799-10807.	7.3	58
94	Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy. Journal of Physical Chemistry C, 2018, 122, 12633-12639.	1.5	58
95	Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials, 2020, 32, 2782-2794.	3.2	58
96	Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. Nano Energy, 2020, 69, 104438.	8.2	57
97	Quantum Dot/Plasmonic Nanoparticle Metachromophores with Quantum Yields That Vary with Excitation Wavelength. Nano Letters, 2011, 11, 2725-2730.	4.5	56
98	Edge-Gold-Coated Silver Nanoprisms: Enhanced Stability and Applications in Organic Photovoltaics and Chemical Sensing. Journal of Physical Chemistry C, 2014, 118, 12459-12468.	1.5	55
99	Charge separation in conjugated-polymer/nanocrystal blends. Synthetic Metals, 1999, 101, 425-428.	2.1	53
100	P-Type Electrochemical Doping Can Occur by Cation Expulsion in a High-Performing Polymer for Organic Electrochemical Transistors. , 2020, 2, 254-260.		53
101	Imaging Local Trap Formation in Conjugated Polymer Solar Cells: A Comparison of Time-Resolved Electrostatic Force Microscopy and Scanning Kelvin Probe Imaging. Journal of Physical Chemistry C, 2010, 114, 20672-20677.	1.5	51
102	Spatially Modulating Interfacial Properties of Transparent Conductive Oxides: Patterning Work Function with Phosphonic Acid Selfâ€Assembled Monolayers. Advanced Materials, 2012, 24, 642-646.	11.1	51
103	Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells. Energy and Environmental Science, 2013, 6, 769.	15.6	51
104	Built-In Potential in Conjugated Polymer Diodes with Changing Anode Work Function: Interfacial States and Deviation from the Schottky–Mott Limit. Journal of Physical Chemistry Letters, 2012, 3, 1202-1207.	2.1	50
105	Nucleating Pattern Formation in Spin-Coated Polymer Blend Films with Nanoscale Surface Templates. Journal of Physical Chemistry B, 2006, 110, 24324-24330.	1.2	49
106	Photoisomerization Quantum Yield of Azobenzene-Modified DNA Depends on Local Sequence. Journal of the American Chemical Society, 2013, 135, 8382-8387.	6.6	49
107	Orientation of Ferroelectric Domains and Disappearance upon Heating Methylammonium Lead Triiodide Perovskite from Tetragonal to Cubic Phase. ACS Applied Energy Materials, 2018, 1, 1534-1539.	2.5	49
108	Long-lived quantum-confined infrared transitions in CdSe nanocrystals. Applied Physics Letters, 2000, 77, 2816-2818.	1.5	43

#	Article	IF	CITATIONS
109	Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials. Accounts of Chemical Research, 2016, 49, 1769-1776.	7.6	43
110	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	3.2	42
111	Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution. Review of Scientific Instruments, 2016, 87, 053702.	0.6	42
112	Correlating Photoluminescence Heterogeneity with Local Electronic Properties in Methylammonium Lead Tribromide Perovskite Thin Films. Chemistry of Materials, 2017, 29, 5484-5492.	3.2	42
113	Optical Detection of Protein in Complex Media with Plasmonic Nanoparticle Dimers. Small, 2011, 7, 1993-1997.	5.2	41
114	Design rules for the broad application of fast (<1 s) methylamine vapor based, hybrid perovskite post deposition treatments. RSC Advances, 2016, 6, 27475-27484.	1.7	41
115	Optical microcavities using highly luminescent films of semiconductor nanocrystals. Applied Physics Letters, 2000, 77, 2500-2502.	1.5	40
116	Competing Effects of Fluorination on the Orientation of Aromatic and Aliphatic Phosphonic Acid Monolayers on Indium Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 15139-15147.	1.5	40
117	DPN-Generated Nanostructures as Positive Resists for Preparing Lithographic Masters or Hole Arrays. Nano Letters, 2006, 6, 2493-2498.	4.5	39
118	Surface Characterization of Polythiophene:Fullerene Blends on Different Electrodes Using Near Edge X-ray Absorption Fine Structure. ACS Applied Materials & Interfaces, 2011, 3, 726-732.	4.0	38
119	Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 280-284.	2.1	38
120	Realization of a Highly Oriented MAPbBr ₃ Perovskite Thin Film via Ion Exchange for Ultrahigh Color Purity Green Light Emission. ACS Energy Letters, 2018, 3, 1662-1669.	8.8	38
121	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. ACS Nano, 2019, 13, 2812-2821.	7.3	38
122	Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates. Nano Letters, 2002, 2, 911-914.	4.5	37
123	How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics. Physical Chemistry Chemical Physics, 2014, 16, 20321-20328.	1.3	37
124	Interplay between Interfacial Structures and Device Performance in Organic Solar Cells: A Case Study with the Low Work Function Metal, Calcium. ACS Applied Materials & amp; Interfaces, 2016, 8, 2125-2131.	4.0	37
125	Light-ion-induced multifragmentation: The ISiS project. Physics Reports, 2006, 434, 1-46.	10.3	36
126	Colloidal CdSe quantum dot electroluminescence: ligands and light-emitting diodes. Mikrochimica Acta, 2008, 160, 345-350.	2.5	36

#	Article	IF	CITATIONS
127	Effects of Ligands on Charge Generation and Recombination in Hybrid Polymer/Quantum Dot Solar Cells. Journal of Physical Chemistry C, 2015, 119, 24733-24739.	1.5	34
128	Electron-Transfer Processes in Zinc Phthalocyanine–Phosphonic Acid Monolayers on ITO: Characterization of Orientation and Charge-Transfer Kinetics by Waveguide Spectroelectrochemistry. Journal of Physical Chemistry Letters, 2012, 3, 1154-1158.	2.1	33
129	Reducing Surface Recombination Velocity of Methylammonium-Free Mixed-Cation Mixed-Halide Perovskites via Surface Passivation. Chemistry of Materials, 2021, 33, 5035-5044.	3.2	33
130	Doping for Speed: Colloidal Nanoparticles for Thin-Film Optoelectronics. ACS Nano, 2009, 3, 261-265.	7.3	31
131	Tuning H- and J-Aggregate Behavior in π-Conjugated Polymers via Noncovalent Interactions. Journal of Physical Chemistry C, 2018, 122, 18860-18869.	1.5	31
132	Peptide-mediated surface-immobilized quantum dot hybrid nanoassemblies with controlled photoluminescence. Journal of Materials Chemistry, 2007, 17, 866-872.	6.7	30
133	Phase Transfer of Large Anisotropic Plasmon Resonant Silver Nanoparticles from Aqueous to Organic Solution. Langmuir, 2009, 25, 7932-7939.	1.6	30
134	New SPM techniques for analyzing OPV materials. Materials Today, 2010, 13, 50-56.	8.3	30
135	Cooperative Nearâ€Field Surface Plasmon Enhanced Quantum Dot Nanoarrays. Advanced Functional Materials, 2010, 20, 2675-2682.	7.8	28
136	Imaging Charge Transfer State Excitations in Polymer/Fullerene Solar Cells with Time-Resolved Electrostatic Force Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 2852-2858.	2.1	28
137	Nanopatterning Peptides as Bifunctional Inks for Templated Assembly. Small, 2009, 5, 689-693.	5.2	27
138	Anisotropic carrier diffusion in single MAPbI3 grains correlates to their twin domains. Energy and Environmental Science, 2020, 13, 4168-4177.	15.6	27
139	Formation of Hot Nuclei with GeVpandÏ€â^Beams. Physical Review Letters, 1997, 79, 817-820.	2.9	26
140	Nanoscale Surface Potential Variation Correlates with Local S/Se Ratio in Solution-Processed CZTSSe Solar Cells. Nano Letters, 2014, 14, 6926-6930.	4.5	26
141	Dynamic Optical Switching of Polymer/Plasmonic Nanoparticle Hybrids with Sparse Loading. Journal of Physical Chemistry B, 2017, 121, 1092-1099.	1.2	25
142	Size-Dependent Charge Transfer Yields in Conjugated Polymer/Quantum Dot Blends. Journal of Physical Chemistry C, 2014, 118, 5710-5715.	1.5	24
143	Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes. Materials Horizons, 2015, 2, 414-419.	6.4	24
144	Scanning Kelvin Probe Microscopy Reveals That Ion Motion Varies with Dimensionality in 2D Halide Perovskites. ACS Energy Letters, 2021, 6, 100-108.	8.8	23

#	Article	IF	CITATIONS
145	Morphology-Dependent Trap Formation in Bulk Heterojunction Photodiodes. Journal of Physical Chemistry B, 2013, 117, 4654-4660.	1.2	22
146	Hot Hole Transfer Increasing Polaron Yields in Hybrid Conjugated Polymer/PbS Blends. Journal of Physical Chemistry Letters, 2014, 5, 208-211.	2.1	22
147	Perovskite solar cells: Different facets of performance. Nature Energy, 2016, 1, .	19.8	22
148	Optical Properties of Reconfigurable Polymer/Silver Nanoprism Hybrids: Tunable Color and Infrared Scattering Contrast. ACS Applied Materials & Interfaces, 2018, 10, 8976-8984.	4.0	22
149	A Directâ€Write Singleâ€Step Positive Etch Resist for Dipâ€Pen Nanolithography. Small, 2007, 3, 2034-2037.	5.2	20
150	Scanning probes for new energy materials: Probing local structure and function. MRS Bulletin, 2012, 37, 633-637.	1.7	20
151	Electrical Detection of Quantum Dot Hot Electrons Generated via a Mn ²⁺ -Enhanced Auger Process. Journal of Physical Chemistry Letters, 2017, 8, 126-130.	2.1	20
152	Charge transport in semiconductor nanocrystals. Synthetic Metals, 2001, 124, 117-120.	2.1	19
153	Nanostructure determines the intensity-dependence of open-circuit voltage in plastic solar cells. Journal of Applied Physics, 2010, 108, 084320.	1.1	19
154	Mapping Nanoscale Variations in Photochemical Damage of Polymer/Fullerene Solar Cells with Dissipation Imaging. ACS Nano, 2013, 7, 10405-10413.	7.3	19
155	Temperature-Dependent Photoisomerization Quantum Yields for Azobenzene-Modified DNA. Journal of Physical Chemistry C, 2017, 121, 6997-7004.	1.5	19
156	A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization. Chemical Communications, 2013, 49, 1321.	2.2	18
157	Performance limits of plasmon-enhanced organic photovoltaics. Applied Physics Letters, 2014, 105, 033304.	1.5	18
158	Dynamic Force Spectroscopy of Photoswitch-Modified DNA. ACS Nano, 2014, 8, 2625-2631.	7.3	18
159	Theobromine and direct arylation: a sustainable and scalable solution to minimize aggregation caused quenching. Green Chemistry, 2019, 21, 6600-6605.	4.6	18
160	Impact of varying side chain structure on organic electrochemical transistor performance: a series of oligoethylene glycol-substituted polythiophenes. Journal of Materials Chemistry A, 2022, 10, 10738-10749.	5.2	18
161	Adsorption behavior and current–voltage characteristics of CdSe nanocrystals on hydrogen-passivated silicon. Journal of Applied Physics, 2002, 92, 1434-1440.	1.1	17
162	Imaging Graphene Moiré Superlattices via Scanning Kelvin Probe Microscopy. Nano Letters, 2021, 21, 3280-3286.	4.5	17

#	Article	IF	CITATIONS
163	Plasmonic Nanoparticle Dimers with Reversibly Photoswitchable Interparticle Distances Linked by DNA. Journal of Physical Chemistry C, 2018, 122, 13363-13370.	1.5	16
164	Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS Applied Materials & Interfaces, 2021, 13, 34616-34624.	4.0	16
165	Amplified Spontaneous Emission in Close-Packed Films of Semiconductor Nanocrystals Using Picosecond Excitation. Advanced Functional Materials, 2002, 12, 537.	7.8	15
166	Nanotechnology for Sustainability: Energy Conversion, Storage, and Conservation. , 2011, , 261-303.		15
167	Photocontrolled DNA Hybridization Stringency with Fluorescence Detection in Heterogeneous Assays. ACS Sensors, 2016, 1, 566-571.	4.0	15
168	Significance of Ambient Temperature Control for Highly Reproducible Layered Perovskite Light-Emitting Diodes. ACS Photonics, 2020, 7, 2489-2497.	3.2	15
169	Effect of time and deposition method on quality of phosphonic acid modifier self-assembled monolayers on indium zinc oxide. Applied Surface Science, 2016, 389, 190-198.	3.1	14
170	Noncontact Imaging of Ion Dynamics in Polymer Electrolytes with Time-Resolved Electrostatic Force Microscopy. ACS Nano, 2019, 13, 536-543.	7.3	14
171	Bismuth Doping Alters Structural Phase Transitions in Methylammonium Lead Tribromide Single Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2749-2755.	2.1	14
172	Direct Measurement of Acceptor Group Localization on Donor–Acceptor Polymers Using Resonant Auger Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 5570-5578.	1.5	13
173	Identifying Nanoscale Structure–Function Relationships Using Multimodal Atomic Force Microscopy, Dimensionality Reduction, and Regression Techniques. Journal of Physical Chemistry Letters, 2018, 9, 3307-3314.	2.1	13
174	Lower limits for non-radiative recombination loss in organic donor/acceptor complexes. Materials Horizons, 2022, 9, 325-333.	6.4	12
175	Bioenabled Nanophotonics. MRS Bulletin, 2008, 33, 536-542.	1.7	11
176	Morphological consequences of ligand exchange in quantum dot - Polymer solar cells. Organic Electronics, 2018, 54, 119-125.	1.4	11
177	Controlling Spatial Crystallization Uniformity and Phase Orientation of Quasiâ€2D Perovskiteâ€Based Lightâ€Emitting Diodes Using Lewis Bases. Advanced Materials Interfaces, 2020, 7, 1901860.	1.9	11
178	Tuning Hybrid exciton–Photon Fano Resonances in Two-Dimensional Organic–Inorganic Perovskite Thin Films. Nano Letters, 2021, 21, 6124-6131.	4.5	11
179	Defect Tolerance of ï€-Conjugated Polymer Crystal Lattices and Their Relevance to Optoelectronic Applications. ACS Applied Polymer Materials, 2019, 1, 1466-1475.	2.0	10
180	Generalizable Framework for Algorithmic Interpretation of Thin Film Morphologies in Scanning Probe Images. Journal of Chemical Information and Modeling, 2020, 60, 3387-3397.	2.5	10

#	Article	IF	CITATIONS
181	Dimethylammonium Addition to Halide Perovskite Precursor Increases Vertical and Lateral Heterogeneity. ACS Energy Letters, 2022, 7, 204-210.	8.8	10
182	The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells. Applied Physics Letters, 2016, 108, 113301.	1.5	9
183	Dynamic Melting Properties of Photoswitch-Modified DNA: Shearing versus Unzipping. Journal of Physical Chemistry B, 2016, 120, 10706-10713.	1.2	9
184	Local Density Fluctuations Predict Photoisomerization Quantum Yield of Azobenzene-Modified DNA. Journal of Physical Chemistry Letters, 2016, 7, 3027-3031.	2.1	9
185	Maximizing the external radiative efficiency of hybrid perovskite solar cells. Pure and Applied Chemistry, 2020, 92, 697-706.	0.9	9
186	Sideways-peaked angular distributions in hadron-induced multifragmentation: Shock waves, geometry, or kinematics?. Physical Review C, 1998, 58, R13-R17.	1.1	8
187	Programmable Materials. Advanced Materials, 2021, 33, e2107344.	11.1	8
188	Classifying Force Spectroscopy of DNA Pulling Measurements Using Supervised and Unsupervised Machine Learning Methods. Journal of Chemical Information and Modeling, 2016, 56, 621-629.	2.5	7
189	Cover Picture: The Evolution of Dip-Pen Nanolithography (Angew. Chem. Int. Ed. 1/2004). Angewandte Chemie - International Edition, 2004, 43, 1-1.	7.2	6
190	How hybrid perovskites get their groove. Science, 2016, 353, 1365-1365.	6.0	6
191	Nonlinear photocarrier dynamics and the role of shallow traps in mixed-halide mixed-cation hybrid perovskites. Journal of Materials Chemistry C, 2021, 9, 8204-8212.	2.7	6
192	Nanoarrays. Biological and Medical Physics Series, 2005, , 89-118.	0.3	5
193	Extraction of Instantaneous Frequencies and Amplitudes in Nonstationary Time-Series Data. IEEE Access, 2021, 9, 83453-83466.	2.6	5
194	Cantilever Ringdown Dissipation Imaging for the Study of Loss Processes in Polymer/Fullerene Solar Cells. Journal of Physical Chemistry C, 2016, 120, 12369-12376.	1.5	4
195	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
196	Alignment of Au nanorods along <i>de novo</i> designed protein nanofibers studied with automated image analysis. Soft Matter, 2021, 17, 6109-6115.	1.2	4
197	Dual-Stimuli Responsive Single-Chain Polymer Folding via Intrachain Complexation of Tetramethoxyazobenzene and Î ² -Cyclodextrin. Langmuir, 2021, 37, 10126-10134.	1.6	4
198	Subpicosecond Photon-Energy-Dependent Hole Transfer from PbS Quantum Dots to Conjugated Polymers. Journal of Physical Chemistry Letters, 2016, 7, 5150-5155.	2.1	3

0

0

#	Article	IF	CITATIONS
199	Patterning: Spatially Modulating Interfacial Properties of Transparent Conductive Oxides: Patterning Work Function with Phosphonic Acid Selfâ€Assembled Monolayers (Adv. Mater. 5/2012). Advanced Materials, 2012, 24, 570-570.	11.1	2
200	Importance of Substrate–Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. Langmuir, 2021, 37, 9111-9119.	1.6	2
201	Charge and energy transfer in polymer/nanocrystal blends. , 0, , 87-111.		1
202	Faster Time-Resolved Electrostatic Force Microscopy. Microscopy and Microanalysis, 2015, 21, 2349-2350.	0.2	1
203	Quasiâ€2D Perovskites: Controlling Spatial Crystallization Uniformity and Phase Orientation of Quasiâ€2D Perovskiteâ€Based Lightâ€Emitting Diodes Using Lewis Bases (Adv. Mater. Interfaces 2/2020). Advanced Materials Interfaces, 2020, 7, 2070017.	1.9	1
204	Enabling and Investigative Tools: Measuring Methods, Instruments, and Metrology. , 2011, , 71-107.		1
205	Probing the nuclear EOS with GeV light-ion beams. Nuclear Physics A, 1997, 626, 287-294.	0.6	0
206	The Evolution of Dip-Pen Nanolithography ChemInform, 2004, 35, no.	0.1	0
207	Scanning Probe Microscopy: Electrical Scanning Probe Microscopy on Active Organic Electronic Devices (Adv. Mater. 1/2009). Advanced Materials, 2009, 21, NA-NA.	11.1	0
208	Nanoarrays: Cooperative Near-Field Surface Plasmon Enhanced Quantum Dot Nanoarrays (Adv. Funct.) Tj ETQqO	0 0 rgBT / 7.8	Overlock 10
209	Special Issue Dedicated to Chad Mirkin: 20 Years of Influential Research. Small, 2011, 7, 1851-1851.	5.2	0
210	The effect of quantum dot ligand treatements on polaron lifetime and photovoltaic device performance. , 2011, , .		0
211	Local Compressibility: Ground-State Predictions of Quantum Yield Trends in Azobenzene-Modified DNA. Biophysical Journal, 2016, 110, 406a.	0.2	0
212	Ion Transport in Perovskites: Dimensionality and the Interaction of Electronic Carriers with Ions. , 0, ,		0

- Plasmonic Enhancement of Raman Scattering in P3HT/PCBM by Silver Nanoprisms. , 2011, , .
- 214 Approaching the Shockley-Queisser Limit with Interface Control in Halide Perovskites. , 0, , .

Advances in Multimodal Scanning Probe Microscopy at the Nanoscale. , 0, , .

216 Anisotropic Charge Carrier Diffusion Correlated to Ferroelastic Twin Domains in MAPbI3 Perovskite. , 0, , .