
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065692/publications.pdf Version: 2024-02-01

DHILLD X LODIS

#	Article	IF	CITATIONS
1	Neural Processing of Amplitude-Modulated Sounds. Physiological Reviews, 2004, 84, 541-577.	13.1	817
2	Responses to amplitudeâ€modulated tones in the auditory nerve of the cat. Journal of the Acoustical Society of America, 1992, 91, 215-232.	0.5	432
3	Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: Evidence for delay lines to the medial superior olive. Journal of Comparative Neurology, 1993, 331, 245-260.	0.9	320
4	Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. Journal of Comparative Neurology, 1991, 304, 387-407.	0.9	293
5	Coincidence Detection in the Auditory System. Neuron, 1998, 21, 1235-1238.	3.8	247
6	Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11773-11779.	3.3	207
7	Anatomy and Physiology of Principal Cells of the Medial Nucleus of the Trapezoid Body (MNTB) of the Cat. Journal of Neurophysiology, 1998, 79, 3127-3142.	0.9	200
8	A matter of time: internal delays in binaural processing. Trends in Neurosciences, 2007, 30, 70-78.	4.2	178
9	Envelope Coding in the Lateral Superior Olive. III. Comparison With Afferent Pathways. Journal of Neurophysiology, 1998, 79, 253-269.	0.9	138
10	Interaural Time Sensitivity Dominated by Cochlea-Induced Envelope Patterns. Journal of Neuroscience, 2003, 23, 6345-6350.	1.7	129
11	Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17516-17520.	3.3	116
12	Temporal Properties of Responses to Broadband Noise in the Auditory Nerve. Journal of Neurophysiology, 2004, 91, 2051-2065.	0.9	110
13	Binaural and cochlear disparities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12917-12922.	3.3	101
14	In vivo coincidence detection in mammalian sound localization generates phase delays. Nature Neuroscience, 2015, 18, 444-452.	7.1	93
15	Correlation Index: A new metric to quantify temporal coding. Hearing Research, 2006, 216-217, 19-30.	0.9	91
16	Receptive Fields and Binaural Interactions for Virtual-Space Stimuli in the Cat Inferior Colliculus. Journal of Neurophysiology, 1999, 81, 2833-2851.	0.9	84
17	Acoustic stria: Anatomy of physiologically characterized cells and their axonal projection patterns. Journal of Comparative Neurology, 2005, 482, 349-371.	0.9	82
18	The volley theory and the spherical cell puzzle. Neuroscience, 2008, 154, 65-76.	1.1	76

#	Article	IF	CITATIONS
19	The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hearing Research, 2019, 377, 109-121.	0.9	76
20	How Secure Is In Vivo Synaptic Transmission at the Calyx of Held?. Journal of Neuroscience, 2008, 28, 10206-10219.	1.7	70
21	Cochlear Phase and Amplitude Retrieved from the Auditory Nerve at Arbitrary Frequencies. Journal of Neuroscience, 2003, 23, 9194-9198.	1.7	66
22	Temporal and Binaural Properties in Dorsal Cochlear Nucleus and Its Output Tract. Journal of Neuroscience, 1998, 18, 10157-10170.	1.7	65
23	Panoramic Measurements of the Apex of the Cochlea. Journal of Neuroscience, 2006, 26, 11462-11473.	1.7	59
24	Enhanced Temporal Response Properties of Anteroventral Cochlear Nucleus Neurons to Broadband Noise. Journal of Neuroscience, 2005, 25, 1560-1570.	1.7	56
25	Auditory Midbrain and Nerve Responses to Sinusoidal Variations in Interaural Correlation. Journal of Neuroscience, 2006, 26, 279-289.	1.7	50
26	Principal cells of the brainstem's interaural sound level detector are temporal differentiators rather than integrators. ELife, 2018, 7, .	2.8	46
27	Axonal Branching Patterns as Sources of Delay in the Mammalian Auditory Brainstem: A Re-Examination. Journal of Neuroscience, 2011, 31, 3016-3031.	1.7	45
28	The Calyx of Held: A Hypothesis on the Need for Reliable Timing in an Intensity-Difference Encoder. Neuron, 2018, 100, 534-549.	3.8	42
29	High-resolution frequency tuning but not temporal coding in the human cochlea. PLoS Biology, 2018, 16, e2005164.	2.6	41
30	Neural Mechanisms of Binaural Processing in the Auditory Brainstem. , 2019, 9, 1503-1575.		41
31	Responses of Cochlear Nucleus Cells and Projections of their Axons. , 1993, , 349-360.		37
32	Response Classes in the Dorsal Cochlear Nucleus and Its Output Tract in the Chloralose-Anesthetized Cat. Journal of Neuroscience, 1998, 18, 3955-3966.	1.7	35
33	Decorrelation Sensitivity of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise. Journal of Neuroscience, 2006, 26, 96-108.	1.7	33
34	Oscillatory Dipoles As a Source of Phase Shifts in Field Potentials in the Mammalian Auditory Brainstem. Journal of Neuroscience, 2010, 30, 13472-13487.	1.7	33
35	Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns. Frontiers in Neural Circuits, 2014, 8, 42.	1.4	32
36	On the Limit of Neural Phase Locking to Fine Structure in Humans. Advances in Experimental Medicine and Biology, 2013, 787, 101-108.	0.8	31

#	Article	IF	CITATIONS
37	Axonal Recordings from Medial Superior Olive Neurons Obtained from the Lateral Lemniscus of the Chinchilla (<i>Chinchilla laniger</i>). Journal of Neuroscience, 2013, 33, 17506-17518.	1.7	31
38	Assessment of the Limits of Neural Phase-Locking Using Mass Potentials. Journal of Neuroscience, 2015, 35, 2255-2268.	1.7	29
39	Early Binaural Hearing: The Comparison of Temporal Differences at the Two Ears. Annual Review of Neuroscience, 2019, 42, 433-457.	5.0	29
40	Interaural time sensitivity in the inferior colliculus of the albino cat. Journal of Comparative Neurology, 1990, 295, 438-448.	0.9	26
41	Estimation of Neural Phase Locking from Stimulus-Evoked Potentials. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 767-787.	0.9	24
42	Temporal Damping in Response to Broadband Noise. I. Inferior Colliculus. Journal of Neurophysiology, 2005, 93, 1857-1870.	0.9	23
43	Comparison of Bandwidths in the Inferior Colliculus and the Auditory Nerve. I. Measurement Using a Spectrally Manipulated Stimulus. Journal of Neurophysiology, 2007, 98, 2566-2579.	0.9	23
44	Interaural Correlation Fails to Account for Detection in a Classic Binaural Task: Dynamic ITDs Dominate NOSÏ€ Detection. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 113-131.	0.9	22
45	Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus. Journal of Neurophysiology, 2014, 111, 817-835.	0.9	21
46	Mechanical and â€~ã€~temporal'' filtering as codeterminants of the response by cat primary fibers to amplitudeâ€modulated signals. Journal of the Acoustical Society of America, 1996, 99, 1029-1039.	0.5	20
47	Auditory Nerve Frequency Tuning Measured with Forward-Masked Compound Action Potentials. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 799-817.	0.9	18
48	A Model of the Medial Superior Olive Explains Spatiotemporal Features of Local Field Potentials. Journal of Neuroscience, 2014, 34, 11705-11722.	1.7	18
49	HemoVision: An automated and virtual approach to bloodstain pattern analysis. Forensic Science International, 2015, 251, 116-123.	1.3	18
50	Ongoing Temporal Coding of a Stochastic Stimulus as a Function of Intensity: Time-Intensity Trading. Journal of Neuroscience, 2012, 32, 9517-9527.	1.7	17
51	Glycinergic axonal inhibition subserves acute spatial sensitivity to sudden increases in sound intensity. ELife, 2021, 10, .	2.8	17
52	Signatures of Somatic Inhibition and Dendritic Excitation in Auditory Brainstem Field Potentials. Journal of Neuroscience, 2017, 37, 10451-10467.	1.7	16
53	Enhancement of phase-locking in rodents. I. An axonal recording study in gerbil. Journal of Neurophysiology, 2017, 118, 2009-2023.	0.9	16
54	Neural tuning matches frequency-dependent time differences between the ears. ELife, 2015, 4, .	2.8	16

#	Article	IF	CITATIONS
55	Variations on a Dexterous theme: Peripheral time–intensity trading. Hearing Research, 2008, 238, 49-57.	0.9	15
56	Comparison of Bandwidths in the Inferior Colliculus and the Auditory Nerve. II: Measurement Using a Temporally Manipulated Stimulus. Journal of Neurophysiology, 2008, 100, 2312-2327.	0.9	15
57	Recruitment of Neurons and Loudness. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 1-4.	0.9	14
58	Predicting spike timing in highly synchronous auditory neurons at different sound levels. Journal of Neurophysiology, 2013, 110, 1672-1688.	0.9	13
59	In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem. Frontiers in Neural Circuits, 2016, 10, 69.	1.4	12
60	The Speed of Auditory Low-Side Suppression. Journal of Neurophysiology, 2005, 93, 201-209.	0.9	11
61	Temporal effects in interaural and sequential level difference perception. Journal of the Acoustical Society of America, 2017, 142, 3267-3283.	0.5	11
62	Assessment of Ipsilateral Efferent Effects in Human via ECochG. Frontiers in Neuroscience, 2017, 11, 331.	1.4	11
63	Dependence of binaural and cochlear "best delays―on characteristic frequency. , 2005, , 477-483.		10
64	Temporal Damping in Response to Broadband Noise. II. Auditory Nerve. Journal of Neurophysiology, 2008, 99, 1942-1952.	0.9	10
65	Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 485-502.	0.9	10
66	Entracking as a Brain Stem Code for Pitch: The Butte Hypothesis. Advances in Experimental Medicine and Biology, 2016, 894, 347-354.	0.8	10
67	Submillisecond Monaural Coincidence Detection by Octopus Cells. Acta Acustica United With Acustica, 2018, 104, 852-855.	0.8	9
68	Neural binaural sensitivity at high sound speeds: Single cell responses in cat midbrain to fast-changing interaural time differences of broadband sounds. Journal of the Acoustical Society of America, 2019, 145, EL45-EL51.	0.5	9
69	The Interaural Time Difference Pathway: a Comparison of Spectral Bandwidth and Correlation Sensitivity at Three Anatomical Levels. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 203-218.	0.9	7
70	A dogged pursuit of coincidence. Journal of Neurophysiology, 2006, 96, 969-972.	0.9	6
71	Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque. AIP Conference Proceedings, 2011, 1403, 286-292.	0.3	5
72	Temporal Correlates to Monaural Edge Pitch in the Distribution of Interspike Interval Statistics in the Auditory Nerve. ENeuro, 2021, 8, ENEURO.0292-21.2021.	0.9	4

#	Article	IF	CITATIONS
73	Matching 3D Facial Shape to Demographic Properties by Geometric Metric Learning: A Part-Based Approach. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4, 163-172.	3.8	4
74	Phase Shifts in Monaural Field Potentials of the Medial Superior Olive. , 2010, , 367-378.		2
75	Measurement of Human Cochlear and Auditory Nerve Potentials. Neuromethods, 2022, , 321-337.	0.2	2
76	Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity. ELife, 2022, 11, .	2.8	2
77	In Vivo Whole-Cell Recording in the Gerbil Cochlear Nucleus. Neuromethods, 2022, , 305-320.	0.2	1
78	Human neural tuning estimated from compound action potentials in normal hearing human volunteers. AIP Conference Proceedings, 2015, , .	0.3	0
79	PHASE AND AMPLITUDE TRANSFER IN THE APEX OF THE COCHLEA. , 2006, , .		0
80	Dynamic ITDs, Not ILDs, Underlie Binaural Detection of a Tone in Wideband Noise. , 2010, , 265-272.		0
81	Bloodstain impact pattern Area of Origin estimation using least-squares angles: A HemoVision validation study. Forensic Science International, 2022, 333, 111211.	1.3	0