Timothy J Close

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065611/publications.pdf

Version: 2024-02-01

101	15,068	57	92
papers	citations	h-index	g-index
111	111	111	12928
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Registration of aphidâ€resistant â€~California Blackeye 77' cowpea. Journal of Plant Registrations, 2022, 16, 13-20.	0.4	3
2	Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 2021, 257, 153351.	1.6	90
3	The UCR Minicore: a resource for cowpea research and breeding. , 2021, 3, e95.		26
4	Legumes: Embracing the genome era. , 2021, 3, e113.		4
5	Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea [<i>Vigna unguiculata</i> (L.) Walp]. Journal of Experimental Botany, 2021, 72, 6219-6229.	2.4	12
6	Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V.) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 542 To
7	A receptor-like protein mediates plant immune responses to herbivore-associated molecular patterns. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31510-31518.	3.3	86
8	Genetic, textual, and archeological evidence of the historical global spread of cowpea (<scp><i>Vigna) Tj ETQq0 (</i></scp>	O 0 rgBT /0	Overlock 10 T
9	Identification of QTL for perenniality and floral scent in cowpea (Vigna unguiculataÂ[L.] Walp.). PLoS ONE, 2020, 15, e0229167.	1.1	13
10	A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea [Vigna unguiculata (L.) Walp]. Theoretical and Applied Genetics, 2019, 132, 3079-3087.	1.8	42
11	Seed Coat Pattern QTL and Development in Cowpea (Vigna unguiculata [L.] Walp.). Frontiers in Plant Science, 2019, 10, 1346.	1.7	36
12	Registration of a Cowpea [<i>Vigna unguiculata</i> (L.) Walp.] Multiparent Advanced Generation Intercross (MAGIC) Population. Journal of Plant Registrations, 2019, 13, 281-286.	0.4	7
13	The genome of cowpea (<i>Vigna unguiculata</i> [L.] Walp.). Plant Journal, 2019, 98, 767-782.	2.8	264
14	The future of legume genetic data resources: Challenges, opportunities, and priorities. , 2019, 1, e16.		30
15	A novel aphid resistance locus in cowpea identified by combining <scp>SSR</scp> and <scp>SNP</scp> markers. Plant Breeding, 2018, 137, 203-209.	1.0	7
16	Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Scientific Reports, 2018, 8, 6261.	1.6	105
17	A multiâ€parent advanced generation interâ€cross (<scp>MAGIC</scp>) population for genetic analysis and improvement of cowpea (<i>Vigna unguiculata</i> L. Walp.). Plant Journal, 2018, 93, 1129-1142.	2.8	132

 $\label{thm:competition} Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (\is vigna) Tj ETQq0 0 8.56 BT /Overlock 10 To Competition (\is vigna) Tj ETQq0 0 8.56 BT /Overlock$

18

#	Article	IF	CITATIONS
19	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	13.7	1,365
20	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	2.4	130
21	Genome resources for climateâ€resilient cowpea, an essential crop for food security. Plant Journal, 2017, 89, 1042-1054.	2.8	199
22	Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (<i>V.Âunguiculata</i> L. Walp). Plant Biotechnology Journal, 2017, 15, 547-557.	4.1	68
23	Genomic Tools in Cowpea Breeding Programs: Status and Perspectives. Frontiers in Plant Science, 2016, 7, 757.	1.7	112
24	A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
25	When less is more:  slicing' sequencing data improves read decoding accuracy and <i>de novo</i> assembly quality. Bioinformatics, 2015, 31, 2972-2980.	1.8	25
26	The Barley <i>Uniculme4</i> Gene Encodes a BLADE-ON-PETIOLE-Like Protein That Controls Tillering and Leaf Patterning. Plant Physiology, 2015, 168, 164-174.	2.3	85
27	<i>De novo</i> meta-assembly of ultra-deep sequencing data. Bioinformatics, 2015, 31, i9-i16.	1.8	25
28	Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Molecular Breeding, 2015, 35, 36.	1.0	85
29	Introgression of a rare haplotype from Southeastern Africa to breed California blackeyes with larger seeds. Frontiers in Plant Science, 2015, 6, 126.	1.7	12
30	CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics, 2015, 16, 236.	1.2	514
31	Sequencing of 15Â622 geneâ€bearing BAC s clarifies the geneâ€dense regions of the barley genome. Plant Journal, 2015, 84, 216-227.	2.8	36
32	Cowpea. Handbook of Plant Breeding, 2015, , 219-250.	0.1	22
33	Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp. tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Molecular Breeding, 2014, 33, 779-791.	1.0	36
34	Molecular mapping of greenbug (<i>Schizaphis graminum</i>) resistance gene <i>Rsg1</i> in barley. Plant Breeding, 2014, 133, 227-233.	1.0	11
35	Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp]. BMC Genomics, 2014, 15, 328.	1.2	65
36	Markers for breeding heat-tolerant cowpea. Molecular Breeding, 2013, 31, 529-536.	1.0	90

#	Article	IF	CITATIONS
37	Anchoring and ordering <scp>NGS</scp> contig assemblies by population sequencing (<scp>POPSEQ</scp>). Plant Journal, 2013, 76, 718-727.	2.8	264
38	A Graph-Theoretical Approach to the Selection of the Minimum Tiling Path from a Physical Map. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 352-360.	1.9	7
39	Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata. Frontiers in Plant Science, 2013, 4, 95.	1.7	35
40	Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space. PLoS Computational Biology, 2013, 9, e1003010.	1.5	20
41	Gene Pools and the Genetic Architecture of Domesticated Cowpea. Plant Genome, 2013, 6, plantgenome2013.03.0005.	1.6	88
42	Genetic Architecture of Delayed Senescence, Biomass, and Grain Yield under Drought Stress in Cowpea. PLoS ONE, 2013, 8, e70041.	1.1	73
43	Genetic Diversity in Latvian Spring Barley Association Mapping Population. , 2013, , 25-35.		2
44	Highâ€Resolution Single Nucleotide Polymorphism Genotyping Reveals a Significant Problem among Breeder Resources. Plant Genome, 2013, 6, plantgenome2012.08.0020.	1.6	8
45	Markers for Quantitative Inheritance of Resistance to Foliar Thrips in Cowpea. Crop Science, 2012, 52, 2075-2081.	0.8	26
46	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	13.7	1,416
46	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716. Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7, e41600.	13.7	1,416 67
	Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp.		
47	Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7, e41600. The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype	1.1	67
47	Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7, e41600. The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource. Plant Genome, 2012, 5, 81-91. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava.	1.1	67 35
47 48 49	Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7, e41600. The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource. Plant Genome, 2012, 5, 81-91. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics, 2012, 124, 685-695.	1.1 1.6	67 35 55
47 48 49 50	Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7, e41600. The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource. Plant Genome, 2012, 5, 81-91. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics, 2012, 124, 685-695. Cowpea-Soybean Synteny Clarified through an Improved Genetic Map. Plant Genome, 2011, 4, 218-225. An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single	1.1 1.6 1.8	67 35 55 108
47 48 49 50	Genetic and Physical Mapping of Candidate Genes for Resistance to Fusarium oxysporum f.sp. tracheiphilum Race 3 in Cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7, e41600. The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource. Plant Genome, 2012, 5, 81-91. Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics, 2012, 124, 685-695. Cowpea-Soybean Synteny Clarified through an Improved Genetic Map. Plant Genome, 2011, 4, 218-225. An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers. Plant Genome, 2011, 4, 238-249. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize	1.1 1.6 1.8 1.6	67 35 55 108

#	Article	IF	CITATIONS
55	Accurate Construction of Consensus Genetic Maps via Integer Linear Programming. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 381-394.	1.9	105
56	Single Nucleotide Polymorphism Mapping and Alignment of Recombinant Chromosome Substitution Lines in Barley. Plant and Cell Physiology, 2011, 52, 728-737.	1.5	32
57	Population Structure and Linkage Disequilibrium in U.S. Barley Germplasm: Implications for Association Mapping. Crop Science, 2010, 50, 556-566.	0.8	106
58	Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedialis (L.) Verdc.). Molecular Breeding, 2010, 25, 675-684.	1.0	59
59	Association mapping of spot blotch resistance in wild barley. Molecular Breeding, 2010, 26, 243-256.	1.0	151
60	Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics, 2010, 11, 707.	1,2	81
61	An Integrated Resource for Barley Linkage Map and Malting Quality QTL Alignment. Plant Genome, 2009, 2, .	1.6	116
62	A consensus genetic map of cowpea [<i>Vigna unguiculata</i> (L) Walp.] and synteny based on EST-derived SNPs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18159-18164.	3.3	257
63	The International Barley Sequencing Consortium—At the Threshold of Efficient Access to the Barley Genome Â. Plant Physiology, 2009, 149, 142-147.	2.3	195
64	A compartmentalized approach to the assembly of physical maps. BMC Bioinformatics, 2009, 10, 217.	1.2	3
65	Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 2009, 10, 582.	1.2	570
66	Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theoretical and Applied Genetics, 2009, 118, 849-863.	1.8	95
67	The K-Segment of Maize DHN1 Mediates Binding to Anionic Phospholipid Vesicles and Concomitant Structural Changes Â. Plant Physiology, 2009, 150, 1503-1514.	2.3	205
68	Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of Barley (Hordeum vulgare L.). Functional and Integrative Genomics, 2008, 8, 387-405.	1.4	173
69	Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genetics, 2008, 9, 73.	2.7	26
70	Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics, 2008, 9, 294.	1.2	120
71	Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph. PLoS Genetics, 2008, 4, e1000212.	1.5	590
72	ON THE ACCURATE CONSTRUCTION OF CONSENSUS GENETIC MAPS. , 2008, , .		57

#	Article	IF	Citations
73	On the accurate construction of consensus genetic maps. Computational Systems Bioinformatics / Life Sciences Society Computational Systems Bioinformatics Conference, 2008, 7, 285-96.	0.4	35
74	A Compartmentalized Approach to the Assembly of Physical Maps. , 2007, , .		4
75	Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant, Cell and Environment, 2007, 30, 410-421.	2.8	195
76	Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise. BMC Genomics, 2007, 8, 87.	1.2	37
77	Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Molecular Biology, 2007, 63, 609-623.	2.0	174
78	DECONVOLUTING THE BAC-GENE RELATIONSHIPS USING A PHYSICAL MAP., 2007,,.		1
79	Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiologia Plantarum, 2006, 127, 551-560.	2.6	37
80	Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Functional and Integrative Genomics, 2006, 6, 143-156.	1.4	138
81	Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18656-18661.	3.3	309
82	Transcriptome Analysis of Cold Acclimation in Barley Albina and Xantha Mutants. Plant Physiology, 2006, 141, 257-270.	2.3	164
83	HarvEST. , 2005, 406, 161-177.		33
84	Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics, 2005, 274, 515-527.	1.0	250
85	Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit. Bioinformatics, 2005, 21, 3852-3858.	1.8	74
86	A New Resource for Cereal Genomics: 22K Barley GeneChip Comes of Age. Plant Physiology, 2004, 134, 960-968.	2.3	287
87	Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiologia Plantarum, 2003, 118, 262-269.	2.6	110
88	The binding of Maize DHN1 to Lipid Vesicles. Gain of Structure and Lipid Specificity. Plant Physiology, 2003, 131, 309-316.	2.3	317
89	Comparative DNA Sequence Analysis of Wheat and Rice Genomes. Genome Research, 2003, 13, 1818-1827.	2.4	369
90	Barley Cbf3 Gene Identification, Expression Pattern, and Map Location. Plant Physiology, 2002, 129, 1781-1787.	2.3	207

#	Article	IF	CITATIONS
91	Dehydrins. Cell and Molecular Response To Stress, 2002, 3, 155-171.	0.4	61
92	Purification and Partial Characterization of a Dehydrin Involved in Chilling Tolerance during Seedling Emergence of Cowpea1. Plant Physiology, 1999, 120, 237-244.	2.3	156
93	Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 1999, 105, 600-608.	2.6	257
94	Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiologia Plantarum, 1999, 106, 177-183.	2.6	56
95	A ca. 40 kDa maize (Zea mays L.) embryo dehydrin is encoded by the dhn2 locus on chromosome 9. Plant Molecular Biology, 1998, 38, 417-423.	2.0	15
96	PROTEINS IMMUNOLOGICALLY RELATED TO DEHYDRINS IN FUCOID ALGAE. Journal of Phycology, 1998, 34, 642-650.	1.0	40
97	Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiologia Plantarum, 1997, 101, 545-555.	2.6	73
98	Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiologia Plantarum, 1997, 100, 291-296.	2.6	774
99	Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytologist, 1997, 137, 61-74.	3.5	265
100	Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in bark tissues of eight species of woody plants. Physiologia Plantarum, 1996, 96, 496-505.	2.6	95
101	Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 1996, 97, 795-803.	2.6	855