Je-Chan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065604/publications.pdf Version: 2024-02-01

IE-CHANLEE

#	Article	IF	CITATIONS
1	Catalyst Design with Atomic Layer Deposition. ACS Catalysis, 2015, 5, 1804-1825.	5.5	608
2	Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 2017, 77, 70-79.	8.2	480
3	Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 2019, 12, 955-972.	5.8	430
4	Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chemistry, 2019, 21, 3715-3743.	4.6	367
5	Production of bioplastic through food waste valorization. Environment International, 2019, 127, 625-644.	4.8	328
6	A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 2017, 246, 242-253.	4.8	263
7	Removal of phenolic compounds from industrial waste water based on membrane-based technologies. Journal of Industrial and Engineering Chemistry, 2019, 71, 1-18.	2.9	228
8	Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 2017, 185, 214-222.	5.1	198
9	Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. Journal of Cleaner Production, 2020, 258, 120536.	4.6	187
10	Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental Research, 2019, 171, 356-364.	3.7	163
11	E-waste management and its effects on the environment and human health. Science of the Total Environment, 2021, 773, 145623.	3.9	159
12	Natural zeolite and its application in concrete composite production. Composites Part B: Engineering, 2019, 165, 354-364.	5.9	137
13	Effects of calcium carbonate on pyrolysis of sewage sludge. Energy, 2018, 153, 726-731.	4.5	126
14	A critical review of ferrate(VI)-based remediation of soil and groundwater. Environmental Research, 2018, 160, 420-448.	3.7	126
15	Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Conversion and Management, 2018, 165, 628-633.	4.4	125
16	Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment. Journal of CO2 Utilization, 2019, 31, 173-180.	3.3	121
17	The valorization of food waste via pyrolysis. Journal of Cleaner Production, 2020, 259, 120816.	4.6	119
18	The role of algae and cyanobacteria in the production and release of odorants in water. Environmental Pollution, 2017, 227, 252-262.	3.7	118

#	Article	IF	CITATIONS
19	The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chemistry, 2013, 15, 1869.	4.6	115
20	Aqueous-phase hydrogenation and hydrodeoxygenation of biomass-derived oxygenates with bimetallic catalysts. Green Chemistry, 2014, 16, 708.	4.6	111
21	Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. Journal of Catalysis, 2015, 330, 19-27.	3.1	111
22	Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy and Environmental Science, 2014, 7, 1657.	15.6	109
23	Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination. Journal of Hazardous Materials, 2021, 403, 123910.	6.5	107
24	Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. Journal of Cleaner Production, 2019, 231, 899-912.	4.6	102
25	Modification of biochar properties using CO2. Chemical Engineering Journal, 2019, 372, 383-389.	6.6	101
26	Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water. Green Chemistry, 2016, 18, 3815-3822.	4.6	100
27	Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. Journal of Cleaner Production, 2020, 254, 120031.	4.6	99
28	Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks. Korean Journal of Chemical Engineering, 2019, 36, 1-11.	1.2	96
29	Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 2021, 281, 130828.	4.2	95
30	Upgrading biogas into syngas through dry reforming. Renewable and Sustainable Energy Reviews, 2021, 143, 110949.	8.2	89
31	Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Science of the Total Environment, 2020, 720, 137604.	3.9	83
32	Chemical recycling of plastic waste via thermocatalytic routes. Journal of Cleaner Production, 2021, 321, 128989.	4.6	81
33	Selenium in soil-microbe-plant systems: Sources, distribution, toxicity, tolerance, and detoxification. Critical Reviews in Environmental Science and Technology, 2022, 52, 2383-2420.	6.6	79
34	High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates. Applied Catalysis B: Environmental, 2013, 140-141, 98-107.	10.8	78
35	Micro- and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. Journal of Cleaner Production, 2021, 291, 125240.	4.6	78
36	Bioelectrochemical systems for a circular bioeconomy. Bioresource Technology, 2020, 300, 122748.	4.8	72

#	Article	IF	CITATIONS
37	Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations. ACS Sustainable Chemistry and Engineering, 2017, 5, 6626-6634.	3.2	68
38	Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis. Environmental Pollution, 2021, 283, 117060.	3.7	66
39	Selective Glycerol Oxidation by Electrocatalytic Dehydrogenation. ChemSusChem, 2014, 7, 1051-1056.	3.6	62
40	Recent advances in the catalytic pyrolysis of microalgae. Catalysis Today, 2020, 355, 263-271.	2.2	59
41	Bio-oil upgrading through hydrogen transfer reactions in supercritical solvents. Chemical Engineering Journal, 2021, 404, 126527.	6.6	59
42	Polymers derived from hemicellulosic parts of lignocellulosic biomass. Reviews in Environmental Science and Biotechnology, 2019, 18, 317-334.	3.9	57
43	Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environmental Pollution, 2021, 270, 116045.	3.7	56
44	COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Energy, 2021, 230, 120876.	4.5	56
45	Post-synthetic modification of luminescent metal-organic frameworks using schiff base complexes for biological and chemical sensing. Coordination Chemistry Reviews, 2021, 449, 214214.	9.5	55
46	Reduction of polycyclic compounds and biphenyls generated by pyrolysis of industrial plastic waste by using supported metal catalysts: A case study of polyethylene terephthalate treatment. Journal of Hazardous Materials, 2020, 392, 122464.	6.5	54
47	Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy, 2017, 137, 510-517.	4.5	53
48	Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. Journal of Cleaner Production, 2019, 227, 624-633.	4.6	50
49	Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass. Energy Conversion and Management, 2016, 118, 243-252.	4.4	49
50	Biodiesel synthesis using chicken manure biochar and waste cooking oil. Bioresource Technology, 2017, 244, 810-815.	4.8	49
51	Application of intermittent ball milling to enzymatic hydrolysis for efficient conversion of lignocellulosic biomass into glucose. Renewable and Sustainable Energy Reviews, 2021, 136, 110442.	8.2	49
52	Enhanced Activity and Stability of TiO ₂ -Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. ACS Catalysis, 2015, 5, 3463-3469.	5.5	48
53	Evaluating the effectiveness of various biochars as porous media for biodiesel synthesis via pseudo-catalytic transesterification. Bioresource Technology, 2017, 231, 59-64.	4.8	48
54	Bioalcohol production from acidogenic products via a two-step process: A case study of butyric acid to butanol. Applied Energy, 2019, 252, 113482.	5.1	47

#	Article	IF	CITATIONS
55	Nanotechnology-based sorption and membrane technologies for the treatment of petroleum-based pollutants in natural ecosystems and wastewater streams. Advances in Colloid and Interface Science, 2020, 275, 102071.	7.0	47
56	A strategy for the efficient removal of chlorophenols in petrochemical wastewater by organophilic and aminated silica@alginate microbeads: Taguchi optimization and isotherm modeling based on partition coefficient. Journal of Hazardous Materials, 2020, 397, 122792.	6.5	47
57	Recent achievements in CO ₂ -assisted and CO ₂ -catalyzed biomass conversion reactions. Green Chemistry, 2020, 22, 2628-2642.	4.6	46
58	Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Applied Thermal Engineering, 2017, 110, 335-345.	3.0	45
59	Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production. Energy Conversion and Management, 2019, 201, 112140.	4.4	44
60	Fast hydropyrolysis of biomass Conversion: A comparative review. Bioresource Technology, 2021, 342, 126067.	4.8	44
61	Bamboo-like N-doped carbon nanotube–confined cobalt as an efficient and robust catalyst for activating monopersulfate to degrade bisphenol A. Chemosphere, 2021, 279, 130569.	4.2	42
62	Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis. Chemosphere, 2020, 248, 126043.	4.2	42
63	Pyrolysis of FeCl3-pretreated spent coffee grounds using CO2 as a reaction medium. Energy Conversion and Management, 2016, 127, 437-442.	4.4	41
64	Biohydrogen production from furniture waste via catalytic gasification in air over Ni-loaded Ultra-stable Y-type zeolite. Chemical Engineering Journal, 2022, 433, 133793.	6.6	41
65	Effects of carbon dioxide on pyrolysis of peat. Energy, 2017, 120, 929-936.	4.5	40
66	Controlling generation of benzenes and polycyclic aromatic hydrocarbons in thermolysis of polyvinyl chloride in CO2. Energy Conversion and Management, 2018, 164, 453-459.	4.4	39
67	Catalytic soot oxidation using hierarchical cobalt oxide microspheres with various nanostructures: Insights into relationships of morphology, property and reactivity. Chemical Engineering Journal, 2020, 395, 124939.	6.6	38
68	Sustainable valorization of algae biomass via thermochemical processing route: An overview. Bioresource Technology, 2022, 344, 126399.	4.8	38
69	Strategic CO 2 utilization for shifting carbon distribution from pyrolytic oil to syngas in pyrolysis of food waste. Journal of CO2 Utilization, 2017, 20, 150-155.	3.3	37
70	Decontamination of petroleum-contaminated soil via pyrolysis under carbon dioxide atmosphere. Journal of Cleaner Production, 2019, 236, 117724.	4.6	37
71	Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds. Journal of Industrial and Engineering Chemistry, 2020, 84, 87-95.	2.9	37
72	Enhancement of energy recovery from chicken manure by pyrolysis in carbon dioxide. Journal of Cleaner Production, 2017, 164, 146-152.	4.6	36

#	Article	IF	CITATIONS
73	Thermolysis of crude oil sludge using CO2 as reactive gas medium. Energy Conversion and Management, 2019, 186, 393-400.	4.4	36
74	Pyrolysis of Polyethylene Terephthalate over Carbon-Supported Pd Catalyst. Catalysts, 2020, 10, 496.	1.6	36
75	Employing CO2 as reaction medium for in-situ suppression of the formation of benzene derivatives and polycyclic aromatic hydrocarbons during pyrolysis of simulated municipal solid waste. Environmental Pollution, 2017, 224, 476-483.	3.7	35
76	Enhanced energy recovery from polyethylene terephthalate via pyrolysis in CO2 atmosphere while suppressing acidic chemical species. Energy Conversion and Management, 2017, 148, 456-460.	4.4	35
77	Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere. Journal of Hazardous Materials, 2020, 393, 122449.	6.5	35
78	Fabrication of a novel magnetic carbon nanocomposite adsorbent via pyrolysis of sugar. Chemosphere, 2016, 163, 305-312.	4.2	34
79	Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2. Energy, 2018, 153, 530-538.	4.5	34
80	CO2 as a reaction medium for pyrolysis of lignin leading to magnetic cobalt-embedded biochar as an enhanced catalyst for Oxone activation. Journal of Colloid and Interface Science, 2019, 545, 16-24.	5.0	34
81	Biodiesel synthesis from fish waste via thermally-induced transesterification using clay as porous material. Journal of Hazardous Materials, 2019, 371, 27-32.	6.5	34
82	Engineered rice-straw biochar catalysts for the production of value-added chemicals from furan. Chemical Engineering Journal, 2020, 387, 124194.	6.6	34
83	Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2–Al2O3. RSC Advances, 2013, 3, 23769.	1.7	33
84	Pyrolysis of polypropylene for production of <scp>fuelâ€range</scp> products: Effect of molecular weight of polypropylene. International Journal of Energy Research, 2021, 45, 13088-13097.	2.2	33
85	Valorization of hazardous COVID-19 mask waste while minimizing hazardous byproducts using catalytic gasification. Journal of Hazardous Materials, 2022, 423, 127222.	6.5	33
86	Microwave co-pyrolysis for simultaneous disposal of environmentally hazardous hospital plastic waste, lignocellulosic, and triglyceride biowaste. Journal of Hazardous Materials, 2022, 423, 127096.	6.5	33
87	Plant-based remediation of air pollution: A review. Journal of Environmental Management, 2022, 301, 113860.	3.8	32
88	Rapid biodiesel synthesis from waste pepper seeds without lipid isolation step. Bioresource Technology, 2017, 239, 17-20.	4.8	31
89	Valorization of waste tea bags via CO2-assisted pyrolysis. Journal of CO2 Utilization, 2021, 44, 101414.	3.3	31
90	Performance of an Internal Combustion Engine Operating on Landfill Gas and the Effect of Syngas Addition. Industrial & Engineering Chemistry Research, 2011, 50, 3570-3579.	1.8	30

#	Article	IF	CITATIONS
91	Effect of carbon dioxide on thermal treatment of food waste as a sustainable disposal method. Journal of CO2 Utilization, 2020, 36, 76-81.	3.3	29
92	Dual-template magnetic molecularly imprinted polymer-based sorbent for simultaneous and selective detection of phenolic endocrine disrupting compounds in foodstuffs. Environmental Pollution, 2021, 275, 116613.	3.7	29
93	Achievements in pyrolysis process in E-waste management sector. Environmental Pollution, 2021, 287, 117621.	3.7	29
94	Metal oxide and carbon nanomaterial based membranes for reverse osmosis and membrane distillation: A comparative review. Environmental Research, 2021, 202, 111716.	3.7	29
95	Energy-efficient thermal waste treatment process with no CO2 emission: A case study of waste tea bag. Energy, 2022, 241, 122876.	4.5	29
96	Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content. Bioresource Technology, 2016, 212, 55-61.	4.8	28
97	Pyrogenic transformation of oil-bearing biomass into biodiesel without lipid extraction. Energy Conversion and Management, 2016, 123, 317-323.	4.4	28
98	Biochar as a catalytic material for the production of 1,4-butanediol and tetrahydrofuran from furan. Environmental Research, 2020, 184, 109325.	3.7	28
99	Enhanced catalytic performance and changed reaction chemistry for electrochemical glycerol oxidation by atomic-layer-deposited Pt-nanoparticle catalysts. Applied Catalysis B: Environmental, 2020, 273, 119037.	10.8	28
100	Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11. Polymers, 2021, 13, 1198.	2.0	28
101	Conversion of cattle manure into functional material to remove selenate from wastewater. Chemosphere, 2021, 278, 130398.	4.2	28
102	Energy density enhancement via pyrolysis of paper mill sludge using CO2. Journal of CO2 Utilization, 2017, 17, 305-311.	3.3	26
103	Using CO2 to mitigate evolution of harmful chemical compounds during thermal degradation of printed circuit boards. Journal of CO2 Utilization, 2017, 20, 66-72.	3.3	26
104	Production and Formation of Biochar. , 2019, , 3-18.		26
105	The photocatalytic performance and structural characteristics of nickel cobalt ferrite nanocomposites after doping with bismuth. Journal of Colloid and Interface Science, 2021, 594, 902-913.	5.0	26
106	Hollow porous molecularly imprinted polymers as emerging adsorbents. Environmental Pollution, 2021, 288, 117775.	3.7	26
107	Synthesis of fatty acid methyl esters via non-catalytic transesterification of avocado oil with dimethyl carbonate. Energy Conversion and Management, 2019, 195, 1-6.	4.4	25
108	Pyrolysis for Nylon 6 Monomer Recovery from Teabag Waste. Polymers, 2020, 12, 2695.	2.0	25

#	Article	IF	CITATIONS
109	Co-pyrolysis for the valorization of food waste and oriental herbal medicine byproduct. Journal of Analytical and Applied Pyrolysis, 2021, 154, 105016.	2.6	25
110	Upcycling of waste teabags via catalytic pyrolysis in carbon dioxide over HZSM-11. Chemical Engineering Journal, 2021, 412, 128626.	6.6	25
111	Utilizing CO2 to suppress the generation of harmful chemicals from thermal degradation of polyvinyl chloride. Journal of Cleaner Production, 2017, 162, 1465-1471.	4.6	24
112	In-situ pyrogenic production of biodiesel from swine fat. Bioresource Technology, 2016, 220, 442-447.	4.8	23
113	Methylation of Volatile Fatty Acids with Ordered Mesoporous Carbon and Carbon Nanotube for Renewable Energy Application. ACS Sustainable Chemistry and Engineering, 2017, 5, 7433-7438.	3.2	23
114	The use of organic waste-derived volatile fatty acids as raw materials of C4-C5 bioalcohols. Journal of Cleaner Production, 2018, 201, 14-21.	4.6	23
115	Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds. Bioresource Technology, 2019, 272, 48-53.	4.8	23
116	Strategic use of CO2 for co-pyrolysis of swine manure and coal for energy recovery and waste disposal. Journal of CO2 Utilization, 2017, 22, 110-116.	3.3	22
117	Production of high-octane gasoline via hydrodeoxygenation of sorbitol over palladium-based bimetallic catalysts. Journal of Environmental Management, 2018, 227, 329-334.	3.8	22
118	Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium. Energy, 2019, 179, 163-172.	4.5	22
119	Estimating total lipid content of Camelina sativa via pyrolysis assisted in-situ transesterification with dimethyl carbonate. Bioresource Technology, 2017, 225, 121-126.	4.8	21
120	CO2-assisted catalytic pyrolysis of digestate with steel slag. Energy, 2020, 191, 116529.	4.5	21
121	Metal-complexed covalent organic frameworks derived N-doped carbon nanobubble–embedded cobalt nanoparticle as a magnetic and efficient catalyst for oxone activation. Journal of Colloid and Interface Science, 2021, 591, 161-172.	5.0	21
122	Tuning Acid–Base Properties Using Mg–Al Oxide Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2015, 7, 16573-16580.	4.0	20
123	Rapid conversion of fat, oil and grease (FOG) into biodiesel without pre-treatment of FOG. Journal of Cleaner Production, 2017, 168, 1211-1216.	4.6	20
124	Enhanced accessibility of carbon in pyrolysis of brown coal using carbon dioxide. Journal of CO2 Utilization, 2018, 27, 433-440.	3.3	20
125	Biogas production from food waste via anaerobic digestion with wood chips. Energy and Environment, 2018, 29, 1365-1372.	2.7	20
126	Application of PANI/TiO2 Composite for Photocatalytic Degradation of Contaminants from Aqueous Solution. Applied Sciences (Switzerland), 2020, 10, 6710.	1.3	20

#	Article	IF	CITATIONS
127	Climate variability and food waste treatment: Analysis for bioenergy sustainability. Renewable and Sustainable Energy Reviews, 2022, 160, 112336.	8.2	20
128	Evaluating the susceptibility of pyrolysis of monosaccharide, disaccharide, and polysaccharide to CO 2. Energy Conversion and Management, 2017, 138, 338-345.	4.4	19
129	Biochar as porous media for thermally-induced non-catalytic transesterification to synthesize fatty acid ethyl esters from coconut oil. Energy Conversion and Management, 2017, 145, 308-313.	4.4	19
130	Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium. Environment International, 2019, 132, 105037.	4.8	19
131	CO2-mediated chicken manure biochar manipulation for biodiesel production. Environmental Research, 2019, 171, 348-355.	3.7	19
132	Aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using manganese dioxide with different crystal structures: A comparative study. Journal of Colloid and Interface Science, 2021, 592, 416-429.	5.0	19
133	Hierarchical ZIF-decorated nanoflower-covered 3-dimensional foam for enhanced catalytic reduction of nitrogen-containing contaminants. Journal of Colloid and Interface Science, 2021, 602, 95-104.	5.0	19
134	Carbon dioxide-mediated thermochemical conversion of banner waste using cobalt oxide catalyst as a strategy for plastic waste treatment. Environmental Research, 2022, 213, 113560.	3.7	19
135	Elimination of bromate from water using aluminum beverage cans via catalytic reduction and adsorption. Journal of Colloid and Interface Science, 2018, 532, 416-425.	5.0	18
136	Preparation and evaluation of a porous molecularly imprinted polymer for selective recognition of the antiepileptic drug carbamazepine. Environmental Research, 2019, 176, 108580.	3.7	18
137	Tailoring pyrogenic products from pyrolysis of defatted Euglena gracilis using CO2 as reactive gas medium. Energy, 2019, 174, 184-190.	4.5	18
138	Valorization of rice husk to aromatics via thermocatalytic conversion in the presence of decomposed methane. Chemical Engineering Journal, 2021, 417, 129264.	6.6	18
139	Thermochemical conversion of mulching film waste via pyrolysis with the addition of cattle excreta. Journal of Environmental Chemical Engineering, 2021, 9, 106362.	3.3	18
140	The competing role of moisture in adsorption of gaseous benzene on microporous carbon. Separation and Purification Technology, 2021, 277, 119487.	3.9	18
141	Renewable Butanol Production via Catalytic Routes. International Journal of Environmental Research and Public Health, 2021, 18, 11749.	1.2	18
142	Achievements in the production of bioplastics from microalgae. Phytochemistry Reviews, 2023, 22, 1147-1165.	3.1	18
143	Catalytic pyrolysis of brown algae using carbon dioxide and oyster shell. Journal of CO2 Utilization, 2019, 34, 668-675.	3.3	17
144	Acid-treated waste red mud as an efficient catalyst for catalytic fast copyrolysis of lignin and polyproylene and ozone-catalytic conversion of toluene. Environmental Research, 2020, 191, 110149.	3.7	17

#	Article	IF	CITATIONS
145	Upgrading bio-heavy oil via esterification of fatty acids and glycerol. Journal of Cleaner Production, 2019, 217, 633-638.	4.6	16
146	Effect of eggshell- and homo-type Ni/Al2O3 catalysts on the pyrolysis of food waste under CO2 atmosphere. Journal of Environmental Management, 2021, 294, 112959.	3.8	16
147	Recent advances in photocatalytic reduction of CO2 by TiO2– and MOF–based nanocomposites impregnated with metal nanoparticles. Materials Today Chemistry, 2022, 24, 100870.	1.7	16
148	The effect of lead exposure on fatty acid composition in mouse brain analyzed using pseudo-catalytic derivatization. Environmental Pollution, 2017, 222, 182-190.	3.7	15
149	Establishing a green platform for biodiesel synthesis via strategic utilization of biochar and dimethyl carbonate. Bioresource Technology, 2017, 241, 1178-1181.	4.8	15
150	Effects of cobalt oxide catalyst on pyrolysis of polyester fiber. Korean Journal of Chemical Engineering, 2022, 39, 3343-3349.	1.2	15
151	Eco-Toxicological and Kinetic Evaluation of TiO2 and ZnO Nanophotocatalysts in Degradation of Organic Dye. Catalysts, 2019, 9, 871.	1.6	14
152	Catalytic Pyrolysis as a Technology to Dispose of Herbal Medicine Waste. Catalysts, 2020, 10, 826.	1.6	14
153	Biodiesel Conversion via Thermal Assisted in-Situ Transesterification of Bovine Fat Using Dimethyl Carbonate as an Acyl Acceptor. ACS Sustainable Chemistry and Engineering, 2016, 4, 5600-5605.	3.2	13
154	Enhanced thermal destruction of toxic microalgal biomass by using CO2. Science of the Total Environment, 2016, 566-567, 575-583.	3.9	13
155	Livestock manure valorization to biochemicals and energy using CO2: A case study of goat excreta. Journal of CO2 Utilization, 2019, 30, 107-111.	3.3	13
156	Recycling of bottom ash derived from combustion of cattle manure and its adsorption behaviors for Cd(II), Cu(II), Pb(II), and Ni(II). Environmental Science and Pollution Research, 2021, 28, 14957-14968.	2.7	13
157	Catalytic production of hexamethylenediamine from renewable feedstocks. Korean Journal of Chemical Engineering, 2021, 38, 1079-1086.	1.2	13
158	Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2. Energy, 2017, 137, 412-418.	4.5	12
159	Production of renewable C4–C6 monoalcohols from waste biomass-derived carbohydrate via aqueous-phase hydrodeoxygenation over Pt-ReO /Zr-P. Chemical Engineering Research and Design, 2018, 115, 2-7.	2.7	12
160	Applications of Natural and Synthetic Melanins as Biosorbents and Adhesive Coatings. Biotechnology and Bioprocess Engineering, 2020, 25, 646-654.	1.4	12
161	Catalytic pyrolysis of plastics derived from endâ€ofâ€lifeâ€vehicles (<scp>ELVs</scp>) under the <scp> CO ₂ </scp> environment. International Journal of Energy Research, 2021, 45, 16781-16793.	2.2	12
162	Valorization of furniture industry-processed residue via catalytic pyrolysis with methane. Energy Conversion and Management, 2022, 261, 115652.	4.4	12

#	Article	IF	CITATIONS
163	Enhancement of bioaromatics production from food waste through catalytic pyrolysis over Zn and Mo-loaded HZSM-5 under an environment of decomposed methane. Chemical Engineering Journal, 2022, 446, 137215.	6.6	12
164	An energy-efficient air-breathing cathode electrocoagulation approach for the treatment of arsenite in aquatic systems. Journal of Industrial and Engineering Chemistry, 2019, 73, 205-213.	2.9	11
165	Electrospun cobalt ferrite nanofiber as a magnetic and effective heterogeneous catalyst for activating peroxymonosulfate to degrade sulfosalicylic acid. Separation and Purification Technology, 2021, 259, 118163.	3.9	11
166	Investigating crystal plane effect of Co3O4 with various morphologies on catalytic activation of monopersulfate for degradation of phenol in water. Separation and Purification Technology, 2021, 276, 119368.	3.9	11
167	3D hexagonal hierachitectured cobalt sulfide as an enhanced catalyst for activating monopersulfate to degrade sunscreen agent ensulizole. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104109.	2.7	11
168	Catalytic upgrading of Quercus Mongolica under methane environment to obtain high yield of bioaromatics. Environmental Pollution, 2021, 272, 116016.	3.7	10
169	Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers, 2021, 13, 364.	2.0	10
170	Integrated MOF-mesh and TEMPO-grafted carbon fiber as a sandwich-like catalytic system for selective valorization of lignin-derived compound under microwave irradiation. Chemical Engineering Journal, 2021, 411, 128605.	6.6	10
171	Size-controlled nanoscale octahedral HKUST-1 as an enhanced catalyst for oxidative conversion of vanillic alcohol: The mediating effect of polyvinylpyrrolidone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127639.	2.3	10
172	Enhanced reduction of bromate in water by 2-dimensional porous Co3O4 via catalytic hydrogenation. Journal of Environmental Chemical Engineering, 2021, 9, 105809.	3.3	10
173	Degradation of sunscreen agent 2-phenylbenzimidazole-5-sulfonic acid using monopersulfate activated by MOF-derived cobalt sulfide nanoplates. Journal of Water Process Engineering, 2021, 44, 102282.	2.6	10
174	Targeted extraction of pesticide from agricultural run-off using novel molecularly imprinted polymeric pendants. Journal of Industrial and Engineering Chemistry, 2022, 109, 202-209.	2.9	10
175	Technical benefits of using methane as a pyrolysis medium for catalytic pyrolysis of Kraft lignin. Bioresource Technology, 2022, 353, 127131.	4.8	10
176	Modification of hydrothermal liquefaction products from Arthrospira platensis by using carbon dioxide. Algal Research, 2017, 24, 148-153.	2.4	9
177	Sustainable approach to biodiesel synthesis via thermally induced transesterification using biochar as surrogate porous media. Energy Conversion and Management, 2017, 151, 601-606.	4.4	9
178	Experimental and theoretical studies of the schiff base (Z)-1-(thiophen-2-yl- methyleneamino) propane-2-ol. Journal of Molecular Structure, 2020, 1200, 127104.	1.8	9
179	Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. Applied Sciences (Switzerland), 2020, 10, 7506.	1.3	9
180	Economically-feasible production of a nylon monomer using RANEY® catalysts. Reaction Chemistry and Engineering, 2021, 6, 225-234.	1.9	9

#	Article	IF	CITATIONS
181	Employment of biogas as pyrolysis medium and chemical feedstock. Journal of CO2 Utilization, 2022, 57, 101877.	3.3	9
182	A strategy for food waste-to-biofuels: Co-production of gasoline alternatives from volatile fatty acids. Journal of Cleaner Production, 2022, 348, 131408.	4.6	9
183	Quantification and speciation of volatile fatty acids in the aqueous phase. Environmental Pollution, 2017, 230, 81-86.	3.7	8
184	Reduction of Na and K contents in bio-heavy oil using micro-/nano-sized CO2 bubbles. Journal of CO2 Utilization, 2019, 34, 430-436.	3.3	8
185	Reductive and adsorptive elimination of bromate from water using Ru/C, Pt/C and Pd/C in the absence of H2: A comparative study. Chemical Engineering Research and Design, 2019, 127, 36-44.	2.7	8
186	Numerical modelling for effect of water curtain in mitigating toxic gas release. Journal of Loss Prevention in the Process Industries, 2020, 63, 103972.	1.7	8
187	Sustainable production of alkyl esters via thermal process in the presence of carbon black. Environmental Research, 2020, 183, 109199.	3.7	8
188	Energy recovery from wood pellets and waste mulching film with minimization of harmful byproducts via thermochemical conversion with CO2 agent. Chemical Engineering Journal, 2022, 427, 131459.	6.6	8
189	Carbon dioxide assisted thermal decomposition of cattle excreta. Science of the Total Environment, 2018, 615, 70-77.	3.9	7
190	Quantification of volatile fatty acids from cattle manure via non-catalytic esterification for odour indication. Science of the Total Environment, 2018, 610-611, 992-996.	3.9	7
191	Microwave-Assisted Catalyst-Free Oxidative Conversion of a Lignin Model Compound to Value-Added Products Using TEMPO. Waste and Biomass Valorization, 2020, 11, 3621-3628.	1.8	7
192	Aqueous-phase biofunctionalized NH2-MIL-53(Al) MOF for biosensing applications. Journal of Porous Materials, 2022, 29, 515-522.	1.3	6
193	Reduction of nitrate to nitrite in water by acid-washed zero-valent zinc. Separation Science and Technology, 2020, 55, 761-770.	1.3	5
194	A Study on Performance and Emissions of a 4-Stroke IC Engine Operated on Landfill Gas With Syngas Addition. , 2010, , .		4
195	Enhanced Catalytic Soot Oxidation by Ce-Based MOF-Derived Ceria Nano-Bar with Promoted Oxygen Vacancy. Catalysts, 2021, 11, 1128.	1.6	4
196	Application of Fe-Impregnated Biochar from Cattle Manure for Removing Pentavalent Antimony from Aqueous Solution. Applied Sciences (Switzerland), 2021, 11, 9257.	1.3	4
197	Single-Use Disposable Waste Upcycling via Thermochemical Conversion Pathway. Polymers, 2021, 13, 2617.	2.0	3
198	Suppression of the hazardous substances in catalytically upgraded bio-heavy oil as a precautious measure for clean air pollution controls. Journal of Hazardous Materials, 2022, 421, 126732.	6.5	3

#	Article	IF	CITATIONS
199	Evaluating effectiveness of dust by-product treatment with scrubbers to mitigate explosion risk in ZrO2 atomic layer deposition process. Journal of Hazardous Materials, 2020, 400, 123284.	6.5	1
200	Nanoscale CoNi alloy@carbon derived from Hofmann-MOF as a magnetic/effective activator for monopersulfate to eliminate an ultraviolet filter. Journal of Nanostructure in Chemistry, 2024, 14, 153-166.	5.3	1
201	Biowaste for environmental remediation and sustainable waste management. Clean Technologies and Environmental Policy, 2018, 20, 2155-2155.	2.1	0
202	Formation of highly porous electrochemically etched silicon carbide: A novel reusable adsorbent for air purification technology. Journal of Cleaner Production, 2019, 218, 521-528.	4.6	0
203	Analysis of fatty acids in mouse tissue via in situ transmethylation with biochar. Environmental Geochemistry and Health, 2019, 41, 1723-1728.	1.8	0
204	The effect of NaOH treatment of rice husk on its catalytic fast pyrolysis under decomposed methane for the production of aromatics. Catalysis Today, 2021, , .	2.2	0
205	Adsorption of phosphate on Ca-carbon foam: batch experiments and model evaluation. , 0, 178, 101-109.		0
206	Selective conversion of hydroxymethylfurfural to diformylfuran using copper hydroxide nitrate with various nano-structures: a comparative study. Sustainable Energy and Fuels, 2022, 6, 276-288.	2.5	0