
Matteo Guidotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimetallic heterogeneous catalysts for hydrogen production. Catalysis Today, 2012, 197, 190-205.	4.4	173
2	Surface organometallic chemistry in heterogeneous catalysis. Chemical Society Reviews, 2018, 47, 8403-8437.	38.1	146
3	Epoxidation on titanium-containing silicates: do structural features really affect the catalytic performance?. Journal of Catalysis, 2003, 214, 242-250.	6.2	105
4	Mono- and Bifunctional Heterogeneous Catalytic Transformation of Terpenes and Terpenoids. Topics in Catalysis, 2004, 27, 157-168.	2.8	92
5	The use of H2O2 over titanium-grafted mesoporous silica catalysts: a step further towards sustainable epoxidation. Green Chemistry, 2009, 11, 1421.	9.0	89
6	Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents. Angewandte Chemie - International Edition, 2014, 53, 10095-10098.	13.8	83
7	Heterogeneous catalytic epoxidation of fatty acid methyl esters on titanium-grafted silicas. Green Chemistry, 2003, 5, 421.	9.0	82
8	Epoxidation of unsaturated FAMEs obtained from vegetable source over Ti(IV)-grafted silica catalysts: A comparison between ordered and non-ordered mesoporous materials. Journal of Molecular Catalysis A, 2006, 250, 218-225.	4.8	78
9	Epoxidation of methyl oleate with hydrogen peroxide. The use of Ti-containing silica solids as efficient heterogeneous catalysts. Green Chemistry, 2011, 13, 1806.	9.0	70
10	Catalytic epoxidation of unsaturated alcohols on Ti-MCM-41. Catalysis Today, 2000, 60, 219-225.	4.4	69
11	Niobium metallocenes deposited onto mesoporous silica via dry impregnation as catalysts for selective epoxidation of alkenes. Journal of Catalysis, 2013, 298, 77-83.	6.2	65
12	Ti(IV) Catalytic Centers Grafted on Different Siliceous Materials:  Spectroscopic and Catalytic Study. Journal of Physical Chemistry C, 2007, 111, 5083-5089.	3.1	64
13	Design and Use of Nanostructured Single-Site Heterogeneous Catalysts for the Selective Transformation of Fine Chemicals. Molecules, 2010, 15, 3829-3856.	3.8	60
14	Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride. Physical Chemistry Chemical Physics, 2013, 15, 13354.	2.8	59
15	Acetylation of aromatic compounds over H-BEA zeolite: the influence of the substituents on the reactivity and on the catalyst stability. Journal of Catalysis, 2005, 230, 375-383.	6.2	58
16	Highly Selective Oxidation of Alkylphenols to Benzoquinones with Hydrogen Peroxide over Silica‧upported Titanium Catalysts: Titanium Cluster Site <i>versus</i> Titanium Single Site. Advanced Synthesis and Catalysis, 2009, 351, 1877-1889.	4.3	51
17	Preparation and characterisation of mesoporous silica–alumina and silica–titania with a narrow pore size distribution. Catalysis Today, 2003, 77, 315-323.	4.4	48
18	Highly efficient production of 2,3,5-trimethyl-1,4-benzoquinone using aqueous H2O2 and grafted Ti(iv)/SiO2 catalyst. Green Chemistry, 2007, 9, 731.	9.0	48

#	Article	IF	CITATIONS
19	The effect of silylation on titanium-containing silica catalysts for the epoxidation of functionalised molecules. Microporous and Mesoporous Materials, 2008, 111, 39-47.	4.4	47
20	Titanosilsesquioxane Anchored on Mesoporous Silicas: A Novel Approach for the Preparation of Heterogeneous Catalysts for Selective Oxidations. Chemistry - A European Journal, 2008, 14, 8098-8101.	3.3	44
21	How to reach 100% selectivity in H2O2-based oxidation of 2,3,6-trimethylphenol to trimethyl-p-benzoquinone over Ti,Si-catalysts. Catalysis Today, 2009, 141, 330-336.	4.4	44
22	Epoxidation with hydrogen peroxide of unsaturated fatty acid methyl esters over Nb(V)â€silica catalysts. European Journal of Lipid Science and Technology, 2013, 115, 86-93.	1.5	43
23	Rational design of single-site heterogeneous catalysts: towards high chemo-, regio- and stereoselectivity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1904-1926.	2.1	40
24	Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catalysis Today, 2016, 277, 192-199.	4.4	39
25	Grafted non-ordered niobium-silica materials: Versatile catalysts for the selective epoxidation of various unsaturated fine chemicals. Catalysis Today, 2014, 235, 49-57.	4.4	36
26	Multifunctional Catalysis Promoted by Solvent Effects: Ti-MCM41 for a One-Pot, Four-Step, Epoxidation–Rearrangement–Oxidation–Decarboxylation Reaction Sequence on Stilbenes and Styrenes. ACS Catalysis, 2015, 5, 3552-3561.	11.2	36
27	Tailoring the Hydrophobic Character of Mesoporous Silica by Silylation for VOC Removal. Separation Science and Technology, 2010, 45, 768-775.	2.5	34
28	Fe-Doped TiO2 Supported on HY Zeolite for Solar Photocatalytic Treatment of Dye Pollutants. Catalysts, 2017, 7, 344.	3.5	31
29	Titanium–Silica Catalysts for the Production of Fully Epoxidised Fatty Acid Methyl Esters. Catalysis Letters, 2008, 122, 53-56.	2.6	28
30	Mesoporous molecular sieves containing niobium(V) as catalysts for the epoxidation of fatty acid methyl esters and rapeseed oil. Journal of Cleaner Production, 2017, 166, 901-909.	9.3	28
31	Diastereoselective epoxidation of hydroxy-containing unsaturated terpenes on heterogeneous titanium-catalyst. Journal of Molecular Catalysis A, 2002, 182-183, 151-156.	4.8	27
32	One-pot conversion of citronellal into isopulegol epoxide on mesoporous titanium silicate. Chemical Communications, 2000, , 1789-1790.	4.1	26
33	Catalytic dehydrogenation of propane over cluster-derived Ir–Sn/SiO2 catalysts. Catalysis Letters, 2006, 112, 89-95.	2.6	26
34	Immersion Calorimetry as a Tool To Evaluate the Catalytic Performance of Titanosilicate Materials in the Epoxidation of Cyclohexene. Langmuir, 2011, 27, 3618-3625.	3.5	26
35	Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 2019, 581, 133-142.	4.3	25
36	An efficient ring opening reaction of methyl epoxystearate promoted by synthetic acid saponite clays. Green Chemistry, 2009, 11, 1173.	9.0	24

#	Article	IF	CITATIONS
37	Niobium-Containing Hydroxyapatites as Amphoteric Catalysts: Synthesis, Properties, and Activity. ACS Catalysis, 2014, 4, 469-479.	11.2	24
38	The stability of niobium-silica catalysts in repeated liquid-phase epoxidation tests: A comparative evaluation of in-framework and grafted mixed oxides. Inorganica Chimica Acta, 2015, 431, 190-196.	2.4	23
39	Inactivation of SARS-CoV-2 in the Liquid Phase: Are Aqueous Hydrogen Peroxide and Sodium Percarbonate Efficient Decontamination Agents?. Journal of Chemical Health and Safety, 2021, 28, 260-267.	2.1	23
40	A comparison between [Ti]-MCM-41 and amorphous mesoporous silica–titania as catalysts for the epoxidation of bulky unsaturated alcohols. Microporous and Mesoporous Materials, 2001, 44-45, 595-602.	4.4	22
41	Acetylation of aromatics over acid zeolites: Seeking a viable alternative to Friedel-Crafts catalysts. Pure and Applied Chemistry, 2007, 79, 1833-1838.	1.9	21
42	Heterogeneous Catalytic Epoxidation: High Limonene Oxide Yields by Surface Silylation of Tiâ€MCMâ€41. Chemical Engineering and Technology, 2011, 34, 1924-1927.	1.5	21
43	Ti-POSS covalently immobilized onto mesoporous silica: A model for active sites in heterogeneous catalytic epoxidation. Inorganica Chimica Acta, 2012, 380, 244-251.	2.4	21
44	Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents. Angewandte Chemie, 2014, 126, 10259-10262.	2.0	21
45	An efficient epoxidation of terminal aliphatic alkenes over heterogeneous catalysts: when solvent matters. Catalysis Science and Technology, 2016, 6, 3832-3839.	4.1	21
46	Synthesis and Catalytic Activity of Titanium Silsesquioxane Frameworks as Models of Titanium Active Surface Sites of Controlled Nuclearity. Organometallics, 2010, 29, 6687-6694.	2.3	20
47	Characterization and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation. Journal of Molecular Catalysis A, 2003, 204-205, 509-518.	4.8	16
48	Iron-montmorillonite clays as active sorbents for the decontamination of hazardous chemical warfare agents. Dalton Transactions, 2018, 47, 2939-2948.	3.3	16
49	Epoxidation of Karanja (Millettia pinnata) Oil Methyl Esters in the Presence of Hydrogen Peroxide over a Simple Niobium-Containing Catalyst. Catalysts, 2019, 9, 344.	3.5	14
50	Chemical risk and chemical warfare agents: science and technology against humankind. Toxicological and Environmental Chemistry, 2016, 98, 1018-1025.	1.2	13
51	Synthetic saponite clays as promising solids for lanthanide ion recovery. New Journal of Chemistry, 2020, 44, 10033-10041.	2.8	13
52	Environmentally Benign Oxidation of Alkylphenols to p-Benzoquinones: A Comparative Study of Various Ti-Containing Catalysts. Topics in Catalysis, 2014, 57, 1377-1384.	2.8	11
53	Titanium-silica catalyst derived from defined metallic titanium cluster precursor: Synthesis and catalytic properties in selective oxidations. Inorganica Chimica Acta, 2018, 470, 393-401.	2.4	11
54	Use of titanium-containing silica catalysts prepared by rapid and straightforward method in selective oxidations. Catalysis Today, 2012, 197, 170-177.	4.4	10

#	Article	IF	CITATIONS
55	Organic–Inorganic Hybrid Saponites Obtained by Intercalation of Titano‣ilsesquioxane. Chemistry - an Asian Journal, 2011, 6, 914-921.	3.3	9
56	Physico-chemical Properties, Biological and Environmental Impact of Nb-saponites Catalysts for the Oxidative Degradation of Chemical Warfare Agents. ChemistrySelect, 2017, 2, 1812-1819.	1.5	9
57	Acid/Vanadiumâ€Containing Saponite for the Conversion of Propene into Coke: Potential Flameâ€Retardant Filler for Nanocomposite Materials. Chemistry - an Asian Journal, 2012, 7, 2394-2402.	3.3	8
58	More Efficient Prussian Blue Nanoparticles for an Improved Caesium Decontamination from Aqueous Solutions and Biological Fluids. Molecules, 2020, 25, 3447.	3.8	8
59	Aromatic Acetylation. , 2006, , 69-94.		7
60	Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds. International Journal of Nanomedicine, 2014, 9, 561.	6.7	7
61	Alkene Epoxidation and Thioether Oxidation with Hydrogen Peroxide Catalyzed by Mesoporous Zirconium-Silicates. Catalysts, 2022, 12, 742.	3.5	7
62	Problems and Pitfalls in the Applications of Zeolites and other Microporous and Mesoporous Solids to Catalytic Fine Chemical Synthesis. , 2006, , 39-67.		6
63	One–pot Selective Dihydroxylation of Limonene Combining Metal and Enzyme Catalysis. ChemistrySelect, 2016, 1, 1795-1798.	1.5	6
64	Bifunctional Europium(III) and Niobium(V)â€Containing Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Chemistry - A European Journal, 2021, 27, 4723-4730.	3.3	6
65	Title is missing!. Journal of Cluster Science, 2001, 12, 123-137.	3.3	5
66	CD3CN and NH3 interaction with Ti(IV) catalytic centres grafted on mesoporous MCM-41. Studies in Surface Science and Catalysis, 2005, , 311-320.	1.5	5
67	Cluster-derived Ir–Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: a spectroscopic study. Dalton Transactions, 2013, 42, 12714.	3.3	5
68	Nanomaterials: biological effects and some aspects of applications in ecology and agriculture. , 2014, ,		5
69	ACLEES CF. SP. FOVEATUS (COLEOPTERA CURCULIONIDAE), AN EXOTIC PEST OF FICUS CARICA IN ITALY: A SUSTAINABLE APPROACH TO DEFENCE BASED ON ALUMINOSILICATE MINERALS AS HOST PLANT MASKING SOLIDS. Redia, 0, , 201-205.	0.4	5
70	One-Pot Reactions on Bifunctional Catalysts. , 2006, , 157-169.		4
71	Tungsten oxide: a catalyst worth studying for the abatement and decontamination of chemical warfare agents. Clobal Security: Health, Science and Policy, 2017, 2, 62-75.	1.6	4
72	The CBRN Threat. Perspective of an Interagency Response. Advanced Sciences and Technologies for Security Applications, 2021, , 429-448.	0.5	4

#	Article	IF	CITATIONS
73	Molecular sieve catalysts as substitutes for metal chlorides in the chemical industry: Some selected examples. Pure and Applied Chemistry, 2011, 84, 509-527.	1.9	3
74	Biocidal effects of silver and zinc oxide nanoparticles on the bioluminescent bacteria. Proceedings of SPIE, 2013, , .	0.8	3
75	Nano-structured Solids and Heterogeneous Catalysts for the Selective Decontamination of Chemical Warfare Agents. NATO Science for Peace and Security Series A: Chemistry and Biology, 2014, , 275-284.	0.5	3
76	Applications in Synthesis of Commodities and Fine Chemicals. , 2009, , 275-347.		3
77	Structured Inorganic Oxide-Based Materials for the Absorption and Destruction of CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 43-53.	0.3	2
78	DEACTIVATION OF MOLECULAR SIEVES IN THE SYNTHESIS OF ORGANIC CHEMICALS. Catalytic Science Series, 2011, , 303-334.	0.0	2
79	(A211) Nanosciences and CBRN Threats: Considerations about the Potential Risk of Illicit Use of Nanosystems. Prehospital and Disaster Medicine, 2011, 26, s58-s58.	1.3	1
80	(A204) Importance of Emergency Response Program Organizations in Coping with the Increasing Risk of CBRN Events. Prehospital and Disaster Medicine, 2011, 26, s56-s56.	1.3	1
81	Design and Applications of Multifunctional Catalysts Based on Inorganic Oxides. , 2011, , 13-53.		1
82	Detection, Identification and Monitoring of Chemical Warfare Agents: a Comparison Between on-Field and in-Lab Approach. NATO Science for Peace and Security Series A: Chemistry and Biology, 2020, , 235-238.	0.5	1
83	Application of NMR relaxometry for real-time monitoring of the removal of metal ions from water by synthetic clays. Dalton Transactions, 2022, 51, 4502-4509.	3.3	1
84	NAO-CNR: The Italian voice at IUPAC. Chemistry International, 2021, 43, 10-15.	0.3	0
85	Organocatalysts for enantioselective synthesis of fine chemicals: definitions, trends and developments. ScienceOpen Research, 2015, .	0.6	0
86	Estimation of the effi ciency of applying nanocomposites as environmentally safe nanofertilizers to stimulate biometric indices of agricultural crops. Agricultural Science and Practice, 2018, 5, 64-76.	0.6	0