
Run Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065501/publications.pdf Version: 2024-02-01

RUNLI

#	Article	IF	CITATIONS
1	Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Storage Materials, 2022, 47, 602-610.	18.0	54
2	Promoted Electron Transfer and Surface Absorption by Single Nickel Atoms for Photocatalytic Cross-Coupling of Aromatic Alcohols and Aliphatic Amines under Visible Light. ACS Applied Materials & Interfaces, 2022, 14, 18383-18392.	8.0	23
3	Construction of Porphyrin Porous Organic Cage as a Support for Single Cobalt Atoms for Photocatalytic Oxidation in Visible Light. ACS Catalysis, 2022, 12, 5827-5833.	11.2	23
4	N, P co-doped graphene enriched phosphorus as a highly efficient oxygen reduction catalyst. Journal of Electroanalytical Chemistry, 2022, 921, 116560.	3.8	9
5	Highly Dispersed and Small-Size Pd–Cu Nanoparticles Supported on N-Doped Graphene for Oxygen Reduction Reaction Catalysts. Energy & Fuels, 2022, 36, 7699-7709.	5.1	4
6	Bioinspired NADH Regeneration Based on Conjugated Photocatalytic Systems. Solar Rrl, 2021, 5, 2000339.	5.8	56
7	Highly fluorescent nitrogen and boron doped carbon quantum dots for selective and sensitive detection of Fe ³⁺ . Journal of Materials Chemistry B, 2021, 9, 4654-4662.	5.8	38
8	Visible Lightâ€Promoted Aryl Azoline Formation over Mesoporous Organosilica as Heterogeneous Photocatalyst. ChemCatChem, 2021, 13, 3410-3413.	3.7	5
9	A novel in situ synthesis of nitrogen-doped graphene with excellent electrocatalytic performance for oxygen reduction reaction. Electrochimica Acta, 2021, 380, 138256.	5.2	12
10	Coupling a 3D Lithophilic Skeleton with a Fluorine-Enriched Interface to Enable Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 37162-37171.	8.0	18
11	Single Atomically Anchored Cobalt on Carbon Quantum Dots as Efficient Photocatalysts for Visible Light-Promoted Oxidation Reactions. Chemistry of Materials, 2020, 32, 734-743.	6.7	75
12	Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction. ACS Catalysis, 2020, 10, 12976-12986.	11.2	50
13	Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13480-13489.	10.3	25
14	Heterogeneous photoredox flow chemistry for the scalable organosynthesis of fine chemicals. Nature Communications, 2020, 11, 1239.	12.8	75
15	Preparation and Electrochemical Properties of Multicomponent Conductive-Nanocarbon Additives for LFP Battery. Nano, 2020, 15, 2050093.	1.0	2
16	A PMMA-based heterogeneous photocatalyst for visible light-promoted [4 + 2] cycloaddition. Catalysis Science and Technology, 2020, 10, 2092-2099.	4.1	18
17	CO ₂ -triggered reversible phase transfer of graphene quantum dots for visible light-promoted amine oxidation. Nanoscale, 2020, 12, 4410-4417.	5.6	24
18	Visible Lightâ€Mediated Conversion of Alcohols to Bromides by a Benzothiadiazole ontaining Organic Photocatalyst. Advanced Synthesis and Catalysis, 2019, 361, 3852-3859.	4.3	15

Run Li

#	Article	IF	CITATIONS
19	Poly(benzothiadiazoles) and Their Derivatives as Heterogeneous Photocatalysts for Visible-Light-Driven Chemical Transformations. ACS Catalysis, 2018, 8, 4735-4750.	11.2	119
20	CO ₂ â€ausgelöste schaltbare Hydrophilie von heterogen konjugierten Polymerphotokatalysatoren für verbesserte katalytische Aktivitäin Wasser. Angewandte Chemie, 2018, 130, 3019-3023.	2.0	10
21	CO ₂ â€Triggered Switchable Hydrophilicity of a Heterogeneous Conjugated Polymer Photocatalyst for Enhanced Catalytic Activity in Water. Angewandte Chemie - International Edition, 2018, 57, 2967-2971.	13.8	85
22	Asymmetric Covalent Triazine Framework for Enhanced Visible‣ight Photoredox Catalysis via Energy Transfer Cascade. Angewandte Chemie - International Edition, 2018, 57, 8316-8320.	13.8	169
23	Conjugated Microporous Polymers with Immobilized TiO ₂ Nanoparticles for Enhanced Visible Light Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700234.	2.3	38
24	Molecular Design of Donorâ€Acceptorâ€Type Organic Photocatalysts for Metalâ€free Aromatic Câ^'C Bond Formations under Visible Light. Advanced Synthesis and Catalysis, 2018, 360, 4312-4318.	4.3	25
25	Electron donor-free photoredox catalysis via an electron transfer cascade by cooperative organic photocatalysts. Catalysis Science and Technology, 2018, 8, 3539-3547.	4.1	13
26	Atom Transfer Radical Polymerization (ATRP) Catalyzed by Visible Lightâ€Absorbed Small Molecule Organic Semiconductors. Macromolecular Rapid Communications, 2018, 39, e1800466.	3.9	16
27	A fixed-bed photoreactor using conjugated nanoporous polymer-coated glass fibers for visible light-promoted continuous photoredox reactions. Journal of Materials Chemistry A, 2017, 5, 3792-3797.	10.3	45
28	Porous conjugated polymer via metal-free synthesis for visible light-promoted oxidative hydroxylation of arylboronic acids. Polymer, 2017, 126, 291-295.	3.8	42
29	Photocatalytic Regioselective and Stereoselective [2 + 2] Cycloaddition of Styrene Derivatives Using a Heterogeneous Organic Photocatalyst. ACS Catalysis, 2017, 7, 3097-3101.	11.2	80
30	Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework. ACS Catalysis, 2017, 7, 5438-5442.	11.2	261
31	Structural Design Principle of Smallâ€Molecule Organic Semiconductors for Metalâ€Free, Visibleâ€Lightâ€Promoted Photocatalysis. Angewandte Chemie - International Edition, 2016, 55, 9783-9787.	13.8	92
32	Photocatalytic Selective Bromination of Electron-Rich Aromatic Compounds Using Microporous Organic Polymers with Visible Light. ACS Catalysis, 2016, 6, 1113-1121.	11.2	133
33	Superhydrophobic and superoleophilic graphene aerogel prepared by facile chemical reduction. Journal of Materials Chemistry A, 2015, 3, 7498-7504.	10.3	160
34	A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. Journal of Materials Chemistry A, 2014, 2, 3057.	10.3	224
35	Three-dimensional superhydrophobic porous hybrid monoliths for effective removal of oil droplets from the surface of water. RSC Advances, 2014, 4, 17393.	3.6	42
36	Synthesis of superior dispersions of reduced graphene oxide. New Journal of Chemistry, 2013, 37, 2778.	2.8	19

DIIN	
Run	

#	Article	IF	CITATIONS
37	Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. Journal of Materials Chemistry A, 2013, 1, 1481-1487.	10.3	139