Da-Ming Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065212/publications.pdf

Version: 2024-02-01

147801 155660 3,263 91 31 55 citations h-index g-index papers 92 92 92 3110 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exploring Lorentz Invariance Violation from Ultrahigh-Energy <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> Rays Observed by LHAASO. Physical Review Letters, 2022, 128, 051102.	7.8	19
2	GRB 181110A: Constraining the Jet Structure, Circumburst Medium and the Initial Lorentz Factor. Universe, 2022, 8, 248.	2.5	1
3	The Bulk Properties of Isolated Neutron Stars Inferred from the Gravitational Redshift Measurements. Astrophysical Journal, 2022, 930, 4.	4.5	2
4	Divergence in Mass Ratio Distributions between Low-mass and High-mass Coalescing Binary Black Holes. Astrophysical Journal Letters, 2022, 933, L14.	8. 3	6
5	Local interstellar spectra and solar modulation of cosmic ray electrons and positrons. Astroparticle Physics, 2021, 124, 102495.	4.3	5
6	Observation of the Crab Nebula with LHAASO-KM2A â^ a performance study *. Chinese Physics C, 2021, 45, 025002.	3.7	67
7	Constraint on phase transition with the multimessenger data of neutron stars. Physical Review D, 2021, 103, .	4.7	21
8	Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 \hat{I}^3 -ray Galactic sources. Nature, 2021, 594, 33-36.	27.8	262
9	Black Hole Mass Function of Coalescing Binary Black Hole Systems: Is there a Pulsational Pair-instability Mass Cutoff?. Astrophysical Journal, 2021, 913, 42.	4.5	10
10	Measurement of the Cosmic Ray Helium Energy Spectrum from 70ÂGeV to 80ÂTeV with the DAMPE Space Mission. Physical Review Letters, 2021, 126, 201102.	7.8	66
11	Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">J</mml:mi><mml:mn><mml:mo>+</mml:mo><mml:mn>3749</mml:mn><td>> <!--/imml:m</td--><td>ırow></td></td></mml:mn></mml:mrow></mml:math>	> /imml:m</td <td>ırow></td>	ırow>
12	Construction and on-site performance of the LHAASO WFCTA camera. European Physical Journal C, 2021, 81, 1.	3.9	18
13	Peta–electron volt gamma-ray emission from the Crab Nebula. Science, 2021, 373, 425-430.	12.6	86
14	Discovery of a New Gamma-Ray Source, LHAASO J0341+5258, with Emission up to 200 TeV. Astrophysical Journal Letters, 2021, 917, L4.	8.3	21
15	Design and Testing of the Front-End Electronics of WCDA in LHAASO. IEEE Transactions on Nuclear Science, 2021, 68, 2257-2267.	2.0	0
16	A Flexible Gaussian Process Reconstruction Method and the Mass Function of the Coalescing Binary Black Hole Systems. Astrophysical Journal, 2021, 917, 33.	4.5	14
17	A dynamic range extension system for LHAASO WCDA-1. Radiation Detection Technology and Methods, 2021, 5, 520-530.	0.8	1
18	Constraints on the phase transition and nuclear symmetry parameters from PSR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">J</mml:mi><mml:mn>0740</mml:mn><mml:mo>+</mml:mo><mml:mo><mml:mn>6620</mml:mn><td>> <1;7 > <1;mml:m</td><td>row></td></mml:mo></mml:mrow></mml:math>	> <1;7 > <1;mml:m	row>

#	Article	IF	CITATIONS
19	Discovery of the Ultrahigh-energy Gamma-Ray Source LHAASO J2108+5157. Astrophysical Journal Letters, 2021, 919, L22.	8.3	28
20	Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA. Radiation Detection Technology and Methods, 2021, 5, 531.	0.8	1
21	Black Hole Gravitational Potential Enhanced Fallback Accretion onto the Nascent Lighter Compact Object: Tentative Evidence in the O3 Run Data of LIGO/Virgo. Astrophysical Journal, 2021, 922, 3.	4.5	5
22	Population Properties of Neutron Stars in the Coalescing Compact Binaries. Astrophysical Journal, 2021, 923, 97.	4.5	7
23	A kilonova associated with GRB 070809. Nature Astronomy, 2020, 4, 77-82.	10.1	55
24	Estimating the maximum gravitational mass of nonrotating neutron stars from the GW170817/GRB 170817A/AT2017gfo observation. Physical Review D, 2020, 101 , .	4.7	30
25	Protomagnetar research through an analysis of the X-ray plateau in the multi-messengar era. Astronomy and Astrophysics, 2020, 641, A56.	5.1	7
26	Is GW190425 Consistent with Being a Neutron Star–Black Hole Merger?. Astrophysical Journal Letters, 2020, 891, L5.	8.3	43
27	The Masses of Isolated Neutron Stars Inferred from the Gravitational Redshift Measurements. Astrophysical Journal, 2020, 888, 45.	4.5	13
28	Black Hole Mass Function of Coalescing Neutron Star Black Hole Binary Systems: The Prospect of Reconstruction with the Gravitational Wave Observations. Astrophysical Journal, 2020, 892, 56.	4.5	7
29	Secondary cosmic-ray nucleus spectra disfavor particle transport in the Galaxy without reacceleration. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 027-027.	5.4	20
30	PSR J0030+0451, GW170817, and the Nuclear Data: Joint Constraints on Equation of State and Bulk Properties of Neutron Stars. Astrophysical Journal, 2020, 892, 55.	4.5	65
31	Discovery of a Universal Correlation for Long and Short GRBs and Its Application for the Study of Luminosity Function and Formation Rate. Astrophysical Journal, 2020, 896, 83.	4.5	7
32	Strong Post-merger Gravitational Radiation of GW170817-like Events. Astrophysical Journal, 2020, 904, 119.	4.5	7
33	The Luminosity Distribution of Short Gamma-Ray Bursts under a Structured Jet Scenario. Astrophysical Journal, 2020, 894, 11.	4.5	2
34	GW170817: The Energy Extraction Process of the Off-axis Relativistic Outflow and the Constraint on the Equation of State of Neutron Stars. Astrophysical Journal, 2019, 877, 2.	4.5	22
35	Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Science Advances, 2019, 5, eaax3793.	10.3	121
36	Probing local cosmic rays using Fermi-LAT observations of a mid-latitude region in the third Galactic quadrant. Physical Review D, 2019, 99, .	4.7	2

#	Article	IF	Citations
37	Late Afterglow Emission Statistics: A Clear Link between GW170817 and Bright Short Gamma-Ray Bursts. Astrophysical Journal Letters, 2019, 876, L28.	8.3	5
38	The Equation of State and Some Key Parameters of Neutron Stars: Constraints from GW170817, the Nuclear Data, and the Low-mass X-Ray Binary Data. Astrophysical Journal, 2019, 885, 39.	4. 5	18
39	How Special Is GRB 170817A?. Astrophysical Journal Letters, 2018, 853, L10.	8.3	12
40	Short GRBs: Opening Angles, Local Neutron Star Merger Rate, and Off-axis Events for GRB/GW Association. Astrophysical Journal, 2018, 857, 128.	4.5	92
41	HESS J1640-465: A Gamma-Ray Emitting Pulsar Wind Nebula?. Astrophysical Journal, 2018, 867, 55.	4.5	13
42	GW170817 and the Prospect of Forming Supramassive Remnants in Neutron Star Mergers. Astrophysical Journal, 2018, 858, 74.	4.5	20
43	Neutrinos from Choked Jets Accompanied by Type-II Supernovae. Astrophysical Journal, 2018, 856, 119.	4.5	32
44	Studies on Cosmic-Ray Nuclei with Voyager, ACE, and AMS-02. I. Local Interstellar Spectra and Solar Modulation. Astrophysical Journal, 2018, 863, 119.	4.5	21
45	THE INTERPRETATION OF THE MULTI-WAVELENGTH AFTERGLOW EMISSION OF SHORT GRB 140903A. Astrophysical Journal, 2017, 835, 73.	4.5	15
46	A parameterized energy correction method for electromagnetic showers in BGO-ECAL of DAMPE. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 856, 11-16.	1.6	13
47	Revealing Physical Activity of GRB Central Engine with Macronova/Kilonova Data. Astrophysical Journal Letters, 2017, 835, L22.	8.3	3
48	Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies. Astrophysical Journal, 2017, 844, 55.	4.5	5
49	Neutron Star–Black Hole Coalescence Rate Inferred from Macronova Observations. Astrophysical Journal Letters, 2017, 844, L22.	8.3	15
50	Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B. Astrophysical Journal, 2017, 836, 81.	4. 5	15
51	Revisiting SNR Puppis A with Seven Years of Fermi Large Area Telescope Observations. Astrophysical Journal, 2017, 843, 90.	4.5	15
52	GRB 111005A at <i>>z</i> > = 0.0133 and the Prospect of Establishing Long–Short GRB/GW Association. Astrophysical Journal Letters, 2017, 851, L20.	8.3	7
53	The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics. Astrophysical Journal Letters, 2017, 851, L18.	8.3	50
54	IMPLICATIONS OF THE TENTATIVE ASSOCIATION BETWEEN GW150914 AND A FERMI-GBM TRANSIENT. Astrophysical Journal Letters, 2016, 827, L16.	8.3	39

#	Article	IF	CITATIONS
55	GRB/GW ASSOCIATION: LONG–SHORT GRB CANDIDATES, TIME LAG, MEASURING GRAVITATIONAL WAVE VELOCITY, AND TESTING EINSTEIN'S EQUIVALENCE PRINCIPLE. Astrophysical Journal, 2016, 827, 75.	4.5	32
56	An <i>r</i> \hat{a}^2 process macronova/kilonova in GRB 060614: evidence for the merger of a neutron star-black hole binary. EPJ Web of Conferences, 2016, 109, 08002.	0.3	3
57	The Macronova in GRB 050709 and the GRB-macronova connection. Nature Communications, 2016, 7, 12898.	12.8	157
58	IS THE LINE-LIKE OPTICAL AFTERGLOW SED OF GRB 050709 DUE TO A FLARE?. Astrophysical Journal, 2016, 833, 234.	4.5	0
59	THE LIGHT CURVE OF THE MACRONOVA ASSOCIATED WITH THE LONG–SHORT BURST GRB 060614. Astrophysical Journal Letters, 2015, 811, L22.	8.3	156
60	The long-lasting optical afterglow plateau of short burst GRB 130912A. Astronomy and Astrophysics, 2015, 576, A71.	5.1	4
61	THE MAGNETIZATION DEGREE OF THE OUTFLOW POWERING THE HIGHLY POLARIZED REVERSE-SHOCK EMISSION OF GRB 120308A. Astrophysical Journal, 2015, 798, 3.	4.5	6
62	A possible macronova in the late afterglow of the long–short burst GRB 060614. Nature Communications, 2015, 6, 7323.	12.8	224
63	GRB 131231A: IMPLICATIONS OF THE GeV EMISSION. Astrophysical Journal Letters, 2014, 787, L6.	8.3	9
64	Fast radio bursts as a cosmic probe?. Physical Review D, 2014, 89, .	4.7	118
64 65	Fast radio bursts as a cosmic probe?. Physical Review D, 2014, 89, . HIGH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST MEDIUM AS WELL AS THE INITIAL LORENTZ FACTOR OF THE OUTFLOW. Astrophysical Journal, 2014, 781, 74.	4.7	118
	HIGH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST		
65	HIGH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST MEDIUM AS WELL AS THE INITIAL LORENTZ FACTOR OF THE OUTFLOW. Astrophysical Journal, 2014, 781, 74. MODEL-DEPENDENT ESTIMATE ON THE CONNECTION BETWEEN FAST RADIO BURSTS AND ULTRA HIGH	4. 5	4
65	HIGH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST MEDIUM AS WELL AS THE INITIAL LORENTZ FACTOR OF THE OUTFLOW. Astrophysical Journal, 2014, 781, 74. MODEL-DEPENDENT ESTIMATE ON THE CONNECTION BETWEEN FAST RADIO BURSTS AND ULTRA HIGH ENERGY COSMIC RAYS. Astrophysical Journal, 2014, 797, 33. The redshift dependence of long gamma-ray burst intrinsic properties. Astrophysics and Space Science,	4.5 4.5	14
65 66 67	HIGH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST MEDIUM AS WELL AS THE INITIAL LORENTZ FACTOR OF THE OUTFLOW. Astrophysical Journal, 2014, 781, 74. MODEL-DEPENDENT ESTIMATE ON THE CONNECTION BETWEEN FAST RADIO BURSTS AND ULTRA HIGH ENERGY COSMIC RAYS. Astrophysical Journal, 2014, 797, 33. The redshift dependence of long gamma-ray burst intrinsic properties. Astrophysics and Space Science, 2014, 350, 691-699. Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance	4.5 4.5	14
65 66 67	HICH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST MEDIUM AS WELL AS THE INITIAL LORENTZ FACTOR OF THE OUTFLOW. Astrophysical Journal, 2014, 781, 74. MODEL-DEPENDENT ESTIMATE ON THE CONNECTION BETWEEN FAST RADIO BURSTS AND ULTRA HIGH ENERGY COSMIC RAYS. Astrophysical Journal, 2014, 797, 33. The redshift dependence of long gamma-ray burst intrinsic properties. Astrophysics and Space Science, 2014, 350, 691-699. Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3329-3341.	4.5 4.5 1.4 4.4	4 14 3 54
65 66 67 68	HIGH ENERGY EMISSION OF GRB 130821A: CONSTRAINING THE DENSITY PROFILE OF THE CIRCUM-BURST MEDIUM AS WELL AS THE INITIAL LORENTZ FACTOR OF THE OUTFLOW. Astrophysical Journal, 2014, 781, 74. MODEL-DEPENDENT ESTIMATE ON THE CONNECTION BETWEEN FAST RADIO BURSTS AND ULTRA HIGH ENERGY COSMIC RAYS. Astrophysical Journal, 2014, 797, 33. The redshift dependence of long gamma-ray burst intrinsic properties. Astrophysics and Space Science, 2014, 350, 691-699. Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3329-3341. Diffuse PeV neutrino emission from ultraluminous infrared galaxies. Physical Review D, 2013, 87, . HIGH-ENERGY EMISSION OF GRB 130427A: EVIDENCE FOR INVERSE COMPTON RADIATION. Astrophysical	4.5 4.5 1.4 4.4	4 14 3 54

#	Article	IF	CITATIONS
73	ON THE PUZZLE OF LONG AND SHORT GAMMA-RAY BURSTS. International Journal of Modern Physics Conference Series, 2013, 23, 268-270.	0.7	1
74	THE PHOTOSPHERIC RADIATION MODEL FOR THE PROMPT EMISSION OF GAMMA-RAY BURSTS: INTERPRETING FOUR OBSERVED CORRELATIONS. Astrophysical Journal Letters, 2012, 755, L6.	8.3	49
75	REVISITING THE LONG/SOFT-SHORT/HARD CLASSIFICATION OF GAMMA-RAY BURSTS IN THE <i>FERMI < /i> Astrophysical Journal, 2012, 750, 88.</i>	4.5	81
76	Gamma-ray bursts: the isotropic-equivalent-energy function and the cosmic formation rate. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2627-2632.	4.4	17
77	Sw 1644+57/GRB 110328A: THE PHYSICAL ORIGIN AND THE COMPOSITION OF THE RELATIVISTIC OUTFLOW. Astrophysical Journal Letters, 2011, 734, L33.	8.3	17
78	SHORT GAMMA-RAY BURSTS: THE MASS OF THE ACCRETION DISK AND THE INITIAL RADIUS OF THE OUTFLOW. Astrophysical Journal, 2011, 739, 47.	4.5	30
79	VERY HIGH ENERGY Î ³ -RAY AFTERGLOW EMISSION OF NEARBY GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 703, 60-67.	4.5	13
80	High-energy afterglow emission from gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1483-1501.	4.4	90
81	On Dust Extinction of Gammaâ€Ray Burst Host Galaxies. Astrophysical Journal, 2008, 685, 1046-1051.	4.5	31
82	Very Early Optical Afterglows for Geometric Models of X-ray Flashes and X-ray Rich GRBs. Research in Astronomy and Astrophysics, 2007, 7, 777-788.	1.1	10
83	A Two-Component Jet Model for the X-Ray Afterglow Flat Segment in the Short Gamma-Ray Burst GRB 051221A. Astrophysical Journal, 2007, 656, L57-L60.	4.5	36
84	The Optical Flare and Afterglow Light Curve of GRB 050904 at Redshift z  = 6.29. Astrophysical Journal, 2006, 636, L69-L72.	4.5	44
85	Early Optical-Infrared Emission from GRB 041219a: Neutron-rich Internal Shocks and a Mildly Magnetized External Reverse Shock. Astrophysical Journal, 2005, 628, L25-L28.	4.5	51
86	Â-ray burst internal shocks with magnetization. Monthly Notices of the Royal Astronomical Society, 2004, 354, 1031-1039.	4.4	39
87	The very early afterglow powered by ultra-relativistic mildly magnetized outflows. Astronomy and Astrophysics, 2004, 424, 477-484.	5.1	71
88	Are there cosmological evolution trends on gamma-ray burst features?. Monthly Notices of the Royal Astronomical Society, 2003, 345, 743-746.	4.4	63
89	GRB afterglow light curves from uniform and non-uniform jets. Astronomy and Astrophysics, 2003, 400, 415-419.	5.1	30
90	The spectral flattening of the low-energy component in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 1996, 283, L133-L137.	4.4	22

#	Article	lF	CITATIONS
91	Identifying gravitational wave emission signature in electromagnetic observations of short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	O