List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Super-tough carbon-nanotube fibres. Nature, 2003, 423, 703-703.	27.8	1,394
2	Scalable Manufacturing of Freeâ€6tanding, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	21.0	613
3	Controlled Assembly of Carbon Nanotubes by Designed Amphiphilic Peptide Helices. Journal of the American Chemical Society, 2003, 125, 1770-1777.	13.7	481
4	Scalable Oneâ€Step Wetâ€Spinning of Graphene Fibers and Yarns from Liquid Crystalline Dispersions of Graphene Oxide: Towards Multifunctional Textiles. Advanced Functional Materials, 2013, 23, 5345-5354.	14.9	354
5	High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles. ACS Nano, 2014, 8, 2456-2466.	14.6	331
6	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	14.9	308
7	Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 2019, 6, 219-249.	12.2	289
8	Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Applied Materials & Interfaces, 2015, 7, 21150-21158.	8.0	267
9	Progress Toward Robust Polymer Hydrogels. Australian Journal of Chemistry, 2011, 64, 1007.	0.9	263
10	Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Applied Physics Letters, 2003, 82, 1682-1684.	3.3	253
11	A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Scientific Reports, 2016, 6, 19491.	3.3	250
12	Continuous carbon nanotube composite fibers: properties, potential applications, and problemsElectronic supplementary information (ESI) available: frontispiece figure. See http://www.rsc.org/suppdata/jm/b3/b312092a/. Journal of Materials Chemistry, 2004, 14, 1.	6.7	247
13	High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Scientific Reports, 2015, 5, 17045.	3.3	243
14	Knittable and Washable Multifunctional MXene oated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	14.9	239
15	Strainâ€Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity. Advanced Functional Materials, 2014, 24, 2957-2966.	14.9	238
16	Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route toward the Next Generation of Self-Assembled Layer-by-Layer Multifunctional 3D Architectures. ACS Nano, 2013, 7, 3981-3990.	14.6	219
17	Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy and Environmental Science, 2010, 3, 1286.	30.8	218
18	Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. Journal of Materials Chemistry A, 2017, 5, 24076-24082.	10.3	191

#	Article	IF	CITATIONS
19	Additive-Free MXene Liquid Crystals and Fibers. ACS Central Science, 2020, 6, 254-265.	11.3	182
20	Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications. Advanced Materials, 2013, 25, 6602-6606.	21.0	178
21	Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting. Joule, 2020, 4, 247-261.	24.0	177
22	Highly Conductive Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Fibers for Flexible and Elastic Fiberâ€Shaped Supercapacitors. Small, 2019, 15, e1804732.	10.0	171
23	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	14.9	168
24	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	21.0	166
25	One‣tep Wet‣pinning Process of Poly(3,4â€ethylenedioxythiophene):Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity. Advanced Functional Materials, 2011, 21, 3363-3370.	14.9	158
26	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	10.0	158
27	Reverse synthesis of star anise-like cobalt doped Cu-MOF/Cu ₂₊₁ O hybrid materials based on a Cu(OH) ₂ precursor for high performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 3815-3827.	10.3	153
28	Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing. Advanced Functional Materials, 2018, 28, 1706592.	14.9	144
29	Fuel-Powered Artificial Muscles. Science, 2006, 311, 1580-1583.	12.6	140
30	Superelastic Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Hybrid Aerogels for Compression-Resilient Devices. ACS Nano, 2021, 15, 5000-5010.	14.6	139
31	A Conductingâ€Polymer Platform with Biodegradable Fibers for Stimulation and Guidance of Axonal Growth. Advanced Materials, 2009, 21, 4393-4397.	21.0	136
32	Freezing Titanium Carbide Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces, 2020, 12, 34032-34040.	8.0	136
33	Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. Journal of Materials Chemistry A, 2019, 7, 6401-6410.	10.3	135
34	Electrically Conductive, Tough Hydrogels with pH Sensitivity. Chemistry of Materials, 2012, 24, 3425-3433.	6.7	134
35	Highly Conducting Carbon Nanotube/Polyethyleneimine Composite Fibers. Advanced Materials, 2005, 17, 1064-1067.	21.0	120
36	MXene: a potential candidate for yarn supercapacitors. Nanoscale, 2017, 9, 18604-18608.	5.6	119

#	Article	IF	CITATIONS
37	Nano-Carbon Electrodes for Thermal Energy Harvesting. Journal of Nanoscience and Nanotechnology, 2015, 15, 1-14.	0.9	118
38	Formation and processability of liquid crystalline dispersions of graphene oxide. Materials Horizons, 2014, 1, 87-91.	12.2	113
39	Unipolar stroke, electroosmotic pump carbon nanotube yarn muscles. Science, 2021, 371, 494-498.	12.6	110
40	Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. Journal of Controlled Release, 2013, 169, 313-320.	9.9	108
41	Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Materials, 2020, 12, .	7.9	105
42	Zn-Ni-Co trimetallic carbonate hydroxide nanothorns branched on Cu(OH)2 nanorods array based on Cu foam for high-performance asymmetric supercapacitors. Journal of Power Sources, 2019, 437, 226897.	7.8	104
43	Temperature-independent capacitance of carbon-based supercapacitor from â^'100 to 60†°C. Energy Storage Materials, 2019, 22, 323-329.	18.0	104
44	3D knitted energy storage textiles using MXene-coated yarns. Materials Today, 2020, 34, 17-29.	14.2	103
45	Extending the low temperature operational limit of Li-ion battery to â^80â€ [~] °C. Energy Storage Materials, 2019, 23, 383-389.	18.0	101
46	Achieving Outstanding Mechanical Performance in Reinforced Elastomeric Composite Fibers Using Large Sheets of Graphene Oxide. Advanced Functional Materials, 2015, 25, 94-104.	14.9	93
47	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	9.4	86
48	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	10.0	81
49	Highly Stretchable Conducting SIBSâ€₽3HT Fibers. Advanced Functional Materials, 2011, 21, 955-962.	14.9	76
50	Carbon Nanotube Nanoweb–Bioelectrode for Highly Selective Dopamine Sensing. ACS Applied Materials & Interfaces, 2012, 4, 44-48.	8.0	74
51	Recent Development of Fabricating Flexible Micro‣upercapacitors for Wearable Devices. Advanced Materials Technologies, 2018, 3, 1800028.	5.8	69
52	Carbon Nanotube Biofiber Formation in a Polymerâ€Free Coagulation Bath. Advanced Functional Materials, 2008, 18, 61-66.	14.9	68
53	Hierarchical Self-Assembly of Peptide-Coated Carbon Nanotubes. Advanced Functional Materials, 2004, 14, 1147-1151.	14.9	67
54	Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides. Journal of Materials Chemistry A, 2020, 8, 1837-1848.	10.3	67

#	Article	IF	CITATIONS
55	Engineering a multimodal nerve conduit for repair of injured peripheral nerve. Journal of Neural Engineering, 2013, 10, 016008.	3.5	65
56	Artificial Muscles Based on Polypyrrole/Carbon Nanotube Laminates. Advanced Materials, 2011, 23, 2966-2970.	21.0	64
57	Wet-spinning of PEDOT:PSS/Functionalized-SWNTs Composite: a Facile Route Toward Production of Strong and Highly Conducting Multifunctional Fibers. Scientific Reports, 2013, 3, 3438.	3.3	64
58	Nanostructured carbon electrodes. Journal of Materials Chemistry, 2010, 20, 3553.	6.7	63
59	Electrical Stimulation of Myoblast Proliferation and Differentiation on Aligned Nanostructured Conductive Polymer Platforms. Advanced Healthcare Materials, 2012, 1, 801-808.	7.6	61
60	Towards the Knittability of Graphene Oxide Fibres. Scientific Reports, 2015, 5, 14946.	3.3	60
61	<i>In situ</i> embedding of cobalt sulfide quantum dots among transition metal layered double hydroxides for high performance all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 22573-22584.	10.3	60
62	Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles. Applied Materials Today, 2018, 11, 255-263.	4.3	59
63	Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Clobal Challenges, 2019, 3, 1900037.	3.6	59
64	Exploiting high quality PEDOT:PSS–SWNT composite formulations for wet-spinning multifunctional fibers. Journal of Materials Chemistry, 2012, 22, 25174.	6.7	58
65	Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors. Journal of Power Sources, 2021, 484, 229288.	7.8	58
66	Multifunctional Carbon Nanotube Composite Fibers. Advanced Engineering Materials, 2004, 6, 801-804.	3.5	57
67	A pHâ€sensitive, strong doubleâ€network hydrogel: Poly(ethylene glycol) methyl ether methacrylates–poly(acrylic acid). Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 423-430.	2.1	57
68	Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy, 2018, 47, 368-373.	16.0	57
69	Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nature Communications, 2021, 12, 3171.	12.8	57
70	MgCo2O4@NiMn layered double hydroxide core-shell nanocomposites on nickel foam as superior electrode for all-solid-state asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 592, 455-467.	9.4	57
71	Arbitrarily Shaped Fiber Assemblies from Spun Carbon Nanotube Gel Fibers. Advanced Functional Materials, 2007, 17, 2918-2924.	14.9	55
72	Novel carbon materials for thermal energy harvesting. Journal of Thermal Analysis and Calorimetry, 2012, 109, 1229-1235.	3.6	54

#	Article	IF	CITATIONS
73	Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Scientific Reports, 2016, 6, 37909.	3.3	54
74	Wet‧pun Biodegradable Fibers on Conducting Platforms: Novel Architectures for Muscle Regeneration. Advanced Functional Materials, 2009, 19, 3381-3388.	14.9	53
75	Synthesis of a porous sheet-like V ₂ O ₅ –CNT nanocomposite using an ice-templating â€~bricks-and-mortar' assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2729-2737.	10.3	52
76	Ti ₃ C ₂ MXene as a new nanofiller for robust and conductive elastomer composites. Nanoscale, 2019, 11, 14712-14719.	5.6	52
77	Integrated Highâ€Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells. Advanced Energy Materials, 2011, 1, 671-677.	19.5	51
78	Facile Fabrication of Flexible Microsupercapacitor with High Energy Density. Advanced Materials Technologies, 2016, 1, 1600166.	5.8	48
79	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	14.9	48
80	Development and Applications of MXene-Based Functional Fibers. ACS Applied Materials & Interfaces, 2021, 13, 36655-36669.	8.0	47
81	Spinning Carbon Nanotube-Gel Fibers Using Polyelectrolyte Complexation. Advanced Functional Materials, 2008, 18, 3759-3764.	14.9	46
82	A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures, 2016, 25, 035015.	3.5	45
83	A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti ₃ C ₂ T _x MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2021, 9, 6393-6401.	10.3	45
84	Modulated release of dexamethasone from chitosan–carbon nanotube films. Sensors and Actuators A: Physical, 2009, 155, 120-124.	4.1	44
85	Highâ€Performance Multifunctional Grapheneâ€PLGA Fibers: Toward Biomimetic and Conducting 3D Scaffolds. Advanced Functional Materials, 2016, 26, 3105-3117.	14.9	43
86	Multilayered and hierarchical structured NiCo double hydroxide nanosheets generated on porous MgCo2O4 nanowire arrays for high performance supercapacitors. Applied Surface Science, 2021, 546, 149133.	6.1	43
87	Tunable photocatalytic selectivity of TiO 2 /SiO 2 nanocomposites: Effect of silica and isolation approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552, 130-141.	4.7	42
88	Ti ₃ C ₂ T _{<i>x</i>} MXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons, 2021, 8, 2886-2912.	12.2	41
89	Conducting gel-fibres based on carrageenan, chitosan and carbon nanotubes. Journal of Materials Chemistry, 2010, 20, 7953.	6.7	40
90	Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. Advanced Materials Interfaces, 2016, 3, 1500672.	3.7	37

#	Article	IF	CITATIONS
91	Strategies for Integrated Capture and Conversion of CO ₂ from Dilute Flue Gases and the Atmosphere. ChemSusChem, 2021, 14, 1805-1820.	6.8	37
92	Synthesis of petaloid and origami-lantern shaped MnO2/Co2CH@C hierarchical core-shell nanorod arrays for portable asymmetric supercapacitor. Composites Part B: Engineering, 2021, 215, 108756.	12.0	37
93	The Role of Tension and Temperature for Efficient Carbonization of Polyacrylonitrile Fibers: Toward Low Cost Carbon Fibers. Industrial & Engineering Chemistry Research, 2018, 57, 4268-4276.	3.7	36
94	The citrate-mediated shape evolution of transforming photomorphic silver nanoparticles. Chemical Communications, 2010, 46, 7807.	4.1	34
95	Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO ₂ nanoparticles. Journal of Materials Chemistry A, 2019, 7, 14328-14336.	10.3	34
96	Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment. Journal of Hazardous Materials, 2020, 381, 120947.	12.4	34
97	Transition Metal Dichalcogenide (TMD) Membranes with Ultrasmall Nanosheets for Ultrafast Molecule Separation. ACS Applied Materials & Interfaces, 2020, 12, 45453-45459.	8.0	33
98	Carbon fibre waste recycling into hybrid nonwovens for electromagnetic interference shielding and sound absorption. Journal of Cleaner Production, 2021, 315, 128196.	9.3	33
99	Elastic Fiber Supercapacitors for Wearable Energy Storage. Macromolecular Rapid Communications, 2018, 39, e1800103.	3.9	30
100	The Role of Unbound Oligomers in the Nucleation and Growth of Electrodeposited Polypyrrole and Method for Preparing High Strength, High Conductivity Films. Langmuir, 2012, 28, 10891-10897.	3.5	29
101	Titanium dioxide coated carbon foam as microreactor for improved sunlight driven treatment of cotton dyeing wastewater. Journal of Cleaner Production, 2020, 246, 118949.	9.3	28
102	MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors. Journal of Materiomics, 2020, 6, 138-144.	5.7	27
103	Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction. Green Energy and Environment, 2017, 2, 285-293.	8.7	26
104	Nanostructured Electrospun Hybrid Graphene/Polyacrylonitrile Yarns. Nanomaterials, 2017, 7, 293.	4.1	26
105	Cathodic electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(<scp>ii</scp>) and peroxydisulfate at pure Ti ₃ C ₂ T _x MXene electrodes. Chemical Communications, 2020, 56, 10022-10025.	4.1	26
106	Polyacrylonitrile/liquid crystalline graphene oxide composite fibers – Towards high performance carbon fiber precursors. Composites Science and Technology, 2019, 182, 107781.	7.8	25
107	Multifunctional, biocompatible and pH-responsive carbon nanotube- and graphene oxide/tectomer hybrid composites and coatings. Nanoscale, 2017, 9, 7791-7804.	5.6	24
108	Sequentially Bridged Ti ₃ C ₂ T <i>_x</i> MXene Sheets for High Performance Applications. Advanced Materials Interfaces, 2021, 8, 2002043.	3.7	23

#	Article	IF	CITATIONS
109	Poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) glued and graphene encapsulated sulfur-carbon film for high-performance free-standing lithium-sulfur batteries. Journal of Power Sources, 2017, 342, 772-778.	7.8	22
110	Liquid Crystals of Graphene Oxide: A Route Towards Solutionâ€Based Processing and Applications. Particle and Particle Systems Characterization, 2017, 34, 1600396.	2.3	22
111	Unimpeded migration of ions in carbon electrodes with bimodal pores at an ultralow temperature of â~'100 °C. Journal of Materials Chemistry A, 2019, 7, 16339-16346.	10.3	21
112	2D Higherâ€Metal Nitride Nanosheets for Solar Steam Generation. Small, 2022, 18, .	10.0	21
113	Scalable Fabrication of Ti ₃ C ₂ T _{<i>x</i>} MXene/RGO/Carbon Hybrid Aerogel for Organics Absorption and Energy Conversion. ACS Applied Materials & Interfaces, 2021, 13, 51333-51342.	8.0	20
114	Advanced microwave-assisted production of hybrid electrodes for energy applications. Energy and Environmental Science, 2010, 3, 1979.	30.8	19
115	Impact of the wet spinning parameters on the alpacaâ€based polyacrylonitrile composite fibers: Morphology and enhanced mechanical properties study. Journal of Applied Polymer Science, 2020, 137, 49264.	2.6	19
116	Water-based asymmetric supercapacitors with 2.5ÂV wide potential and high energy density based on Na0.6CoO2 nanoarray formed via electrochemical oxidation. Carbon, 2022, 189, 81-92.	10.3	19
117	Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers. Journal of Materials Chemistry A, 2022, 10, 4770-4781.	10.3	19
118	Hierarchical Nafion enhanced carbon aerogels for sensing applications. Nanoscale, 2016, 8, 3416-3424.	5.6	17
119	Pore-assisted lithium deposition in hierarchically porous and hollow carbon textile for highly stable lithium anode. Journal of Power Sources, 2021, 489, 229464.	7.8	17
120	Mechanical Reinforcement of Continuous Flow Spun Polyelectrolyte Complex Fibers. Macromolecular Bioscience, 2009, 9, 354-360.	4.1	16
121	Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications. 2D Materials, 2014, 1, 034002.	4.4	16
122	Investigation on structure and characteristics of alpacaâ€based wetâ€spun polyacrylonitrile composite fibers by utilizing natural textile waste. Journal of Applied Polymer Science, 2020, 137, 48370.	2.6	16
123	Interfacial Engineering of 3D Hollow Mo-Based Carbide/Nitride Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 50524-50530.	8.0	16
124	Performance enhancement of single-walled nanotube–microwave exfoliated graphene oxide composite electrodes using a stacked electrode configuration. Journal of Materials Chemistry A, 2014, 2, 14835-14843.	10.3	14
125	N-doped pierced graphene microparticles as a highly active electrocatalyst for Li-air batteries. 2D Materials, 2015, 2, 024002.	4.4	14
126	Light-Controlled Ionic Transport through Molybdenum Disulfide Membranes. ACS Applied Materials & Interfaces, 2021, 13, 34679-34685.	8.0	14

#	Article	IF	CITATIONS
127	In-situ formation of α-Co(OH)2 nanosheet arrays on magnesium cobaltate nanowires for hybrid supercapacitors with enhanced electrochemical performance. Applied Surface Science, 2021, 568, 150856.	6.1	14
128	Wet-Spun Trojan Horse Cell Constructs for Engineering Muscle. Frontiers in Chemistry, 2020, 8, 18.	3.6	13
129	2D Nb ₄ N ₅ Nanosheets Synthesized by a Template Method. Chemistry - an Asian Journal, 2020, 15, 1609-1612.	3.3	13
130	Synthesis of nitrogen-sulfur co-doped Ti3C2T MXene with enhanced electrochemical properties. Materials Reports Energy, 2022, 2, 100079.	3.2	13
131	â€~Laser chemistry' synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Research Letters, 2013, 8, 233.	5.7	12
132	Scalable Solid-Template Reduction for Designed Reduced Graphene Oxide Architectures. ACS Applied Materials & amp; Interfaces, 2013, 5, 7676-7681.	8.0	12
133	Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm. ACS Biomaterials Science and Engineering, 2020, 6, 3197-3207.	5.2	12
134	Spinning Regenerated Silk Fibers with Improved Toughness by Plasticizing with Low Molecular Weight Silk. Biomacromolecules, 2021, 22, 788-799.	5.4	12
135	Data on kilometer scale production of stretchable conductive multifilaments enables knitting wearable strain sensing textiles. Data in Brief, 2018, 18, 1765-1772.	1.0	11
136	Toughening Wet‧pun Silk Fibers by Silk Nanofiber Templating. Macromolecular Rapid Communications, 2022, 43, e2100891.	3.9	11
137	A novel and facile approach to fabricate a conductive and biomimetic fibrous platform with sub-micron and micron features. Journal of Materials Chemistry B, 2016, 4, 1056-1063.	5.8	10
138	Coiled polymeric growth factor gradients for multi-luminal neural chemotaxis. Brain Research, 2015, 1619, 72-83.	2.2	9
139	Enhancement of Adhesive Strength of Epoxy/Carboxyl-Terminated Poly(butadiene- <i>co</i> -acrylonitrile) Nanocomposites Using Waste Hemp Fiber-Derived Cellulose Nanofibers. Industrial & Engineering Chemistry Research, 2020, 59, 10904-10913.	3.7	9
140	Tough and Fatigue Resistant Cellulose Nanocrystal Stitched Ti ₃ C ₂ T <i>_x</i> MXene Films. Macromolecular Rapid Communications, 2022, 43, e2200114.	3.9	7
141	Elastic conducting carbon nanotube-laden SIBS fibers. , 2010, , .		6
142	Simultaneously â€~pushing' and â€~pulling' graphene oxide into low-polar solvents through a designed interface. Nanotechnology, 2018, 29, 315707.	2.6	6
143	Environmentally stable MXene ink for direct writing flexible electronics. Nanoscale, 2022, 14, 6299-6304.	5.6	6
144	<i>In vivo</i> biocompatibility and <i>in vitro</i> characterization of poly″actideâ€ <i>co</i> â€glycolide structures containing levetiracetam, for the treatment of epilepsy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 424-431.	4.0	5

#	Article	IF	CITATIONS
145	Automated quantification of neurite outgrowth orientation distributions on patterned surfaces. Journal of Neural Engineering, 2014, 11, 046006.	3.5	5
146	Superwettable membrane with hierarchical porosity for simultaneous separation of emulsions and removal of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125798.	4.7	5
147	Structure and Properties of Poly(ethylene terephthalate) Fiber Webs Prepared via Laser-Electrospinning and Subsequent Annealing Processes. Materials, 2020, 13, 5783.	2.9	4
148	Comparison of silver-plated nylon (Ag/PA66) e-textile and Ag/AgCl electrodes for bioelectrical impedance analysis (BIA). Biomedical Physics and Engineering Express, 2021, 7, 035011.	1.2	4
149	Highly stable lithium anodes from recycled hemp textile. Chemical Communications, 2022, 58, 1946-1949.	4.1	4
150	Planar or Biaxial Stretching of Poly(ethylene terephthalate) Fiber Webs Prepared by Laser-Electrospinning. Materials, 2022, 15, 2209.	2.9	4
151	Co3Se4 quantum dots encapsulated with nitrogen-doped porous nanocarbon as ultrastable electrode material for water-based all-solid asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 627, 10-20.	9.4	4
152	Nerve Repair: A Conductingâ€Polymer Platform with Biodegradable Fibers for Stimulation and Guidance of Axonal Growth (Adv. Mater. 43/2009). Advanced Materials, 2009, 21, .	21.0	3
153	Inkjetâ€Printed Planar Biochips for Interfacial Detection of Biomoleculars. Advanced Materials Interfaces, 2017, 4, 1700588.	3.7	3
154	Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material. AIP Conference Proceedings, 2018, , .	0.4	2
155	Hierarchical hollow metal nanostructure arrays for selective CO2 conversion. Materials Advances, 0, , .	5.4	1
156	Mechanical properties of hybrid polymer nanotube systems. , 2003, , .		0
157	Carbon Nanotubes Self-Assembled by Amphiphilic Peptide -Helices. Microscopy and Microanalysis, 2003, 9, 326-327.	0.4	0