Michael K Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7065091/publications.pdf

Version: 2024-02-01

414414 394421 1,631 32 19 32 citations h-index g-index papers 33 33 33 1392 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cry3Aa*SpyCatcher Fusion Crystals Produced in Bacteria as Scaffolds for Multienzyme Coimmobilization. Bioconjugate Chemistry, 2022, 33, 386-396.	3.6	5
2	Efficient encapsulation of functional proteins into erythrocytes by controlled shear-mediated membrane deformation. Lab on A Chip, 2021, 21, 2121-2128.	6.0	2
3	A SUMO1-Derived Peptide Targeting SUMO-Interacting Motif Inhibits α-Synuclein Aggregation. Cell Chemical Biology, 2021, 28, 180-190.e6.	5.2	15
4	Efficient intracellular delivery of p53 protein by engineered protein crystals restores tumor suppressing function in vivo. Biomaterials, 2021, 271, 120759.	11.4	16
5	Amine-Linked Flavonoids as Agents against Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	3
6	Cytosolic delivery of CDK4/6 inhibitor p16 protein using engineered protein crystals for cancer therapy. Acta Biomaterialia, 2021, 135, 582-592.	8.3	4
7	Targeted Myoglobin Delivery as a Strategy for Enhancing the Sensitivity of Hypoxic Cancer Cells to Radiation. IScience, 2020, 23, 101158.	4.1	15
8	<i>In Vivo</i> Enzyme Entrapment in a Protein Crystal. Journal of the American Chemical Society, 2020, 142, 9879-9883.	13.7	39
9	Directed evolution of a genetically encoded immobilized lipase for the efficient production of biodiesel from waste cooking oil. Biotechnology for Biofuels, 2019, 12, 165.	6.2	37
10	Targeted delivery of antimicrobial peptide by Cry protein crystal to treat intramacrophage infection. Biomaterials, 2019, 217, 119286.	11.4	30
11	Cry Protein Crystal-Immobilized Metallothioneins for Bioremediation of Heavy Metals from Water. Crystals, 2019, 9, 287.	2.2	9
12	Direct production of a genetically-encoded immobilized biodiesel catalyst. Scientific Reports, 2018, 8, 12783.	3.3	35
13	The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins. BMC Biology, 2016, 14, 71.	3.8	37
14	Cry Protein Crystals: A Novel Platform for Protein Delivery. PLoS ONE, 2015, 10, e0127669.	2.5	20
15	Pyrrolysineâ€Inspired Protein Cyclization. ChemBioChem, 2014, 15, 1769-1772.	2.6	3
16	A Clickâ€andâ€Release Pyrrolysine Analogue. ChemBioChem, 2013, 14, 805-808.	2.6	11
17	Nonenzymatic Ubiquitylation. ChemBioChem, 2011, 12, 21-33.	2.6	24
18	The pyrrolysine translational machinery as a genetic-code expansion tool. Current Opinion in Chemical Biology, 2011, 15, 387-391.	6.1	42

#	Article	IF	Citations
19	<i>N</i> ⁶ â€(2â€(<i>R</i>)â€Propargylglycyl)lysine as a Clickable Pyrrolysine Mimic. Chemistry - an Asian Journal, 2010, 5, 1765-1769.	3.3	19
20	Pyrrolysine Analogs for Translational Incorporation into Proteins. European Journal of Organic Chemistry, 2010, 2010, 4171-4179.	2.4	20
21	A Pyrrolysine Analogue for Protein Click Chemistry. Angewandte Chemie - International Edition, 2009, 48, 1633-1635.	13.8	107
22	A Pyrrolysine Analogue for Siteâ€Specific Protein Ubiquitination. Angewandte Chemie - International Edition, 2009, 48, 9184-9187.	13.8	127
23	Specificity of Pyrrolysyl-tRNA Synthetase for Pyrrolysine and Pyrrolysine Analogs. Journal of Molecular Biology, 2009, 385, 1156-1164.	4.2	39
24	Support for Nickel as the Labile Metal in the A-center of theM. BarkeriAcetyl-CoA Decarbonylase/Synthase Complex. Journal of the Chinese Chemical Society, 2004, 51, 1253-1258.	1.4	1
25	Direct charging of tRNACUA with pyrrolysine in vitro and in vivo. Nature, 2004, 431, 333-335.	27.8	219
26	A New UAC-Encoded Residue in the Structure of a Methanogen Methyltransferase. Science, 2002, 296, 1462-1466.	12.6	376
27	Structural, Magnetic and Catalytic Properties of a Self-Recognized ν-Oxo-Bridged Diiron(III) Bis(benzimidazole) Complex. Inorganic Chemistry, 2001, 40, 4036-4039.	4.0	18
28	Insight into the Catalytic Mechanism of DNA Polymerase β: Structures of Intermediate Complexesâ€,‡. Biochemistry, 2001, 40, 5368-5375.	2.5	127
29	Structural Basis for the Design of Antibiotics Targeting Peptide Deformylaseâ€,‡. Biochemistry, 1999, 38, 4712-4719.	2.5	75
30	Pulsed ¹ H and ⁵⁵ Mn ENDOR studies of dinuclear Mn(III)Mn(IV) model complexes. Molecular Physics, 1998, 95, 1283-1294.	1.7	23
31	Pulsed 1H and 55Mn ENDOR studies of dinuclear Mn(III)Mn(IV) model complexes. Molecular Physics, 1998, 95, 1283-1294.	1.7	2
32	Crystal Structure of theEscherichia coliPeptide Deformylaseâ€,‡. Biochemistry, 1997, 36, 13904-13909.	2.5	131