Evy Goossens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/706494/publications.pdf

Version: 2024-02-01

623734 552781 41 805 14 26 h-index citations g-index papers 42 42 42 855 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Veterinary Research, 2018, 49, 43.	3.0	147
2	Vaccines as alternatives to antibiotics for food producing animals. Part 1: challenges and needs. Veterinary Research, 2018, 49, 64.	3.0	84
3	Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions. Veterinary Research, 2018, 49, 70.	3.0	57
4	Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poultry Science, 2020, 99, 441-453.	3.4	56
5	Perfringolysin O: The Underrated Clostridium perfringens Toxin?. Toxins, 2015, 7, 1702-1721.	3.4	53
6	The synergistic necrohemorrhagic action of Clostridium perfringens perfringolysin and alpha toxin in the bovine intestine and against bovine endothelial cells. Veterinary Research, 2013, 44, 45.	3.0	45
7	Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Veterinary Research, 2017, 48, 9.	3.0	44
8	The C-terminal domain of Clostridium perfringens alpha toxin as a vaccine candidate against bovine necrohemorrhagic enteritis. Veterinary Research, 2016, 47, 52.	3.0	28
9	In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota. Veterinary Research, 2019, 50, 15.	3.0	24
10	Elevated faecal ovotransferrin concentrations are indicative for intestinal barrier failure in broiler chickens. Veterinary Research, 2018, 49, 51.	3.0	21
11	Lesion Development in a New Intestinal Loop Model Indicates the Involvement of a Shared Clostridium perfringens Virulence Factor in Haemorrhagic Enteritis in Calves. Journal of Comparative Pathology, 2013, 149, 103-112.	0.4	20
12	<i>Toxocara vitulorum</i> in American bison (<i>Bison bison</i>) calves. Veterinary Record, 2007, 160, 556-557.	0.3	19
13	Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis. BMC Veterinary Research, 2016, 12, 101.	1.9	19
14	Rapid growth predisposes broilers to necrotic enteritis. Avian Pathology, 2019, 48, 416-422.	2.0	16
15	Zinc inhibits lethal inflammatory shock by preventing microbeâ€induced interferon signature in intestinal epithelium. EMBO Molecular Medicine, 2020, 12, e11917.	6.9	14
16	Clostridium perfringens strains from bovine enterotoxemia cases are not superior in in vitroproduction of alpha toxin, perfringolysin O and proteolytic enzymes. BMC Veterinary Research, 2014, 10, 32.	1.9	13
17	Dietary muramidase degrades bacterial peptidoglycan to NOD-activating muramyl dipeptides and reduces duodenal inflammation in broiler chickens. British Journal of Nutrition, 2021, 126, 641-651.	2.3	13
18	Prevalence and bacterial colonisation of fundic ulcerations in veal calves. Veterinary Record, 2013, 172, 269-269.	0.3	12

#	Article	IF	Citations
19	Intestinal clostridial counts have no diagnostic value in the diagnosis of enterotoxaemia in veal calves. Veterinary Record, 2013, 172, 237-237.	0.3	11
20	Bacillus Subtilis 29784 as a Feed Additive for Broilers Shifts the Intestinal Microbial Composition and Supports the Production of Hypoxanthine and Nicotinic Acid. Animals, 2021, 11, 1335.	2.3	11
21	C. perfringens challenge reduces matrix metalloproteinase activity in the jejunal mucosa of Eimeria-infected broiler chickens. Veterinary Research, 2020, 51, 100.	3.0	10
22	Research Note: The administration schedule of coccidia is a major determinant in broiler necrotic enteritis models. Poultry Science, 2021, 100, 100806.	3.4	9
23	Spotlight on avian pathology: untangling contradictory disease descriptions of necrotic enteritis and necro-haemorrhagic enteritis in broilers. Avian Pathology, 2020, 49, 423-427.	2.0	8
24	Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathology, 2022, 51, 407-417.	2.0	8
25	Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Scientific Reports, 2021, 11, 20493.	3.3	7
26	Salamander loss alters litter decomposition dynamics. Science of the Total Environment, 2021, 776, 145994.	8.0	6
27	Field evaluation of the efficacy of fenbendazole in captive wild ruminants. Veterinary Record, 2005, 157, 582-586.	0.3	5
28	Veal Calves Produce Less Antibodies against C. Perfringens Alpha Toxin Compared to Beef Calves. Toxins, 2015, 7, 2586-2597.	3.4	5
29	Non-toxic perfringolysin O and \hat{l}_{\pm} -toxin derivatives as potential vaccine candidates against bovine necrohaemorrhagic enteritis. Veterinary Journal, 2016, 217, 89-94.	1.7	5
30	A comparative study on the use of selective media for the enumeration of Clostridium perfringens in poultry faeces. Anaerobe, 2020, 63, 102205.	2.1	5
31	Toxinotype A Clostridium perfringens causing septicaemia with intravascular haemolysis: two cases and review of the literature. International Journal of Infectious Diseases, 2022, 115, 224-228.	3.3	5
32	Tree Species Diversity and Forest Edge Density Jointly Shape the Gut Microbiota Composition in Juvenile Great Tits (Parus major). Frontiers in Microbiology, 2022, 13, 790189.	3.5	5
33	Protein Truncating Variants of colA in Clostridium perfringens Type G Strains. Frontiers in Cellular and Infection Microbiology, 2021, 11, 645248.	3.9	4
34	A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens. Microorganisms, 2021, 9, 1708.	3.6	3
35	Incidence and associated risk factors of necrotic enteritis in Belgian layer pullet flocks. Avian Pathology, 2020, 49, 476-485.	2.0	3
36	Omics technologies in poultry health and productivity – part 2: future applications in the poultry industry. Avian Pathology, 2022, 51, 418-423.	2.0	3

#	Article	IF	CITATIONS
37	Exploring the faecal microbiome of the Eurasian nuthatch (Sitta europaea). Archives of Microbiology, 2021, 203, 2119-2127.	2.2	2
38	Haemorrhagic enteritis in newborn calves associated with Clostridium perfringens and colostrum delivery. JMM Case Reports, $2015, 2, \ldots$	1.3	2
39	Nanl sialidase contributes to toxin expression and host cell binding of Clostridium perfringens type G strain CP56 in vitro. Veterinary Microbiology, 2022, 266, 109371.	1.9	1
40	Chapter 11 Steering broiler intestinal microbiota through nutrition for improved health. , 2019 , , $193\text{-}198$.		0
41	Het geven van vaste voeding aan witvleeskalveren vermindert de uitscheiding van clostridia in de mest. Vlaams Diergeneeskundig Tijdschrift, 2016, 85, .	0.1	0