

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064832/publications.pdf Version: 2024-02-01

<u> Samuel Voãÿ</u>

#	Article	IF	CITATIONS
1	A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurgical Focus, 2019, 47, E15.	2.3	60
2	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I: Segmentation. Cardiovascular Engineering and Technology, 2018, 9, 565-581.	1.6	59
3	Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-8.	1.3	39
4	Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology, 2020, 62, 1627-1635.	2.2	35
5	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1795-1804.	2.8	29
6	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—Phase Ib: Effect of morphology on hemodynamics. PLoS ONE, 2019, 14, e0216813.	2.5	23
7	Stent-induced vessel deformation after intracranial aneurysm treatment – A hemodynamic pilot study. Computers in Biology and Medicine, 2019, 111, 103338.	7.0	20
8	Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1805-1813.	2.8	18
9	Exploration of blood flow patterns in cerebral aneurysms during the cardiac cycle. Computers and Graphics, 2018, 72, 12-25.	2.5	11
10	Biomechanical Influences on Mesh-Related Complications in Incisional Hernia Repair. Frontiers in Surgery, 2021, 8, 763957.	1.4	9
11	Virtual Inflation of the Cerebral Artery Wall for the Integrated Exploration of OCT and Histology Data. Computer Graphics Forum, 2017, 36, 57-68.	3.0	7
12	CFD simulations of inhalation through a subject-specific human larynx – Impact of the unilateral vocal fold immobility. Computers in Biology and Medicine, 2022, 143, 105243.	7.0	7
13	Complex wall modeling for hemodynamic simulations of intracranial aneurysms based on histologic images. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 597-607.	2.8	6
14	Variability of intra-aneurysmal hemodynamics caused by stent-induced vessel deformation. Current Directions in Biomedical Engineering, 2017, 3, 305-308.	0.4	3
15	From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms. Current Directions in Biomedical Engineering, 2016, 2, 679-683.	0.4	2
16	Fluid-structure interaction in intracranial vessel walls: The role of patient-specific wall thickness. Current Directions in Biomedical Engineering, 2018, 4, 587-590.	0.4	2
17	VICTORIA: VIrtual neck Curve and True Ostium Reconstruction of Intracranial Aneurysms. Cardiovascular Engineering and Technology, 2021, 12, 454-465.	1.6	2
18	Comparison of pressure reconstruction approaches based on measured and simulated velocity fields. Current Directions in Biomedical Engineering, 2017, 3, 309-312.	0.4	0

#	Article	IF	CITATIONS
19	Towards Deep Learning-based Wall Shear Stress Prediction for Intracranial Aneurysms. Informatik Aktuell, 2021, , 105-110.	0.6	0
20	Impact of Gradual Vascular Deformations on the Intra-aneurysmal Hemodynamics. Informatik Aktuell, 2018, , 359-364.	0.6	0