
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064745/publications.pdf Version: 2024-02-01

SHINICHI KOMABA

#	Article	IF	CITATIONS
1	Electrode materials for K-ion batteries. , 2023, , 83-127.		3
2	Na Diffusion in Hard Carbon Studied with Positive Muon Spin Rotation and Relaxation. ACS Physical Chemistry Au, 2022, 2, 98-107.	4.0	7
3	Development of Nonaqueous Electrolytes for High-Voltage K-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 569-581.	3.2	14
4	Superconcentrated NaFSA–KFSA Aqueous Electrolytes for 2 V-Class Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 23507-23517.	8.0	7
5	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	7.4	41
6	All-Solid-State Potassium Polymer Batteries Enabled by the Effective Pretreatment of Potassium Metal. ACS Energy Letters, 2022, 7, 2244-2246.	17.4	20
7	MgOâ€Template Synthesis of Extremely High Capacity Hard Carbon for Naâ€Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 5114-5120.	13.8	169
8	MgOâ€Template Synthesis of Extremely High Capacity Hard Carbon for Naâ€Ion Battery. Angewandte Chemie, 2021, 133, 5174-5180.	2.0	11
9	A phosphite-based layered framework as a novel positive electrode material for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5045-5052.	10.3	7
10	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	7.4	10
11	Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates. ChemSusChem, 2021, 14, 1166-1175.	6.8	31
12	Phase evolution of electrochemically potassium intercalated graphite. Journal of Materials Chemistry A, 2021, 9, 11187-11200.	10.3	27
13	Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. Npj Computational Materials, 2021, 7, .	8.7	39
14	Comparison of Ionic Transport Properties of Non-Aqueous Lithium and Sodium Hexafluorophosphate Electrolytes. Journal of the Electrochemical Society, 2021, 168, 040538.	2.9	24
15	Na3V2O2(PO4)2F3-2 as a stable positive electrode for potassium-ion batteries. Journal of Power Sources, 2021, 493, 229676.	7.8	10
16	Impact of Surface Hydrophilicity of Gas-Diffusion-Type Biocathodes on Their Oxygen Reduction Ability for Biofuel Cells. Journal of the Electrochemical Society, 2021, 168, 074506.	2.9	3
17	Multiâ€Enzymeâ€Modified Bioanode Utilising Starch as a Fuel. ChemElectroChem, 2021, 8, 4199-4206.	3.4	4
18	Effect of Crystallinity of Synthetic Graphite on Electrochemical Potassium Intercalation into Graphite. Electrochemistry, 2021, 89, 433-438.	1.4	5

#	Article	IF	CITATIONS
19	1,3,2-Dioxathiolane 2,2-Dioxide as an Electrolyte Additive for K-Metal Cells. ACS Energy Letters, 2021, 6, 3643-3649.	17.4	23
20	Design of all-solid-state chloride and nitrate ion-selective electrodes using anion insertion materials of electrodeposited poly(allylamine)-MnO2 composite. Electrochimica Acta, 2021, 389, 138749.	5.2	9
21	Impact of Mg and Ti doping in O3 type NaNi _{1/2} Mn _{1/2} O ₂ on reversibility and phase transition during electrochemical Na intercalation. Journal of Materials Chemistry A, 2021, 9, 12830-12844.	10.3	32
22	Multiâ€Enzymeâ€Modified Bioanode Utilising Starch as a Fuel. ChemElectroChem, 2021, 8, 4160.	3.4	0
23	Effect of Substituted Styreneâ€Butadiene Rubber Binders on the Stability of 4.5 Vâ€Charged LiCoO ₂ Electrode. ChemElectroChem, 2021, 8, 4345-4352.	3.4	5
24	Enhanced Electrochemical Properties of KTiOPO ₄ –rGO Negative Electrode for Sodium and Potassium Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 24823-24830.	3.1	5
25	La ₂ Ni _{0.5} Li _{0.5} O ₄ Modified Single Polycrystalline Particles of NMC622 for Improved Capacity Retention in High-Voltage Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 110505.	2.9	3
26	Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO ₂ . Journal of Materials Chemistry A, 2021, 9, 26810-26819.	10.3	10
27	Development of advanced electrolytes in Na-ion batteries: application of the Red Moon method for molecular structure design of the SEI layer. RSC Advances, 2021, 12, 971-984.	3.6	14
28	High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 135-140.	5.1	113
29	Investigation and Improvement of Metallic Aluminum as Alloying Electrode in Non-Aqueous Li Cells. Journal of the Electrochemical Society, 2020, 167, 110513.	2.9	9
30	Elucidating Influence of Mg―and Cuâ€Doping on Electrochemical Properties of O3â€Na <i>_x</i> [Fe,Mn]O ₂ for Naâ€Ion Batteries. Small, 2020, 16, e2006483.	10.0	24
31	KFSA/glyme electrolytes for 4 V-class K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23766-23771.	10.3	26
32	Impact of Newly Developed Styrene–Butadiene–Rubber Binder on the Electrode Performance of High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ Electrode. ACS Applied Energy Materials, 2020, 3, 7978-7987.	5.1	22
33	Development of KPF ₆ /KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34873-34881.	8.0	62
34	Sodium-driven Rechargeable Batteries: An Effort towards Future Energy Storage. Chemistry Letters, 2020, 49, 1507-1516.	1.3	37
35	Application of Ionic Liquid as K-Ion Electrolyte of Graphite//K ₂ Mn[Fe(CN) ₆] Cell. ACS Energy Letters, 2020, 5, 2849-2857.	17.4	51
36	Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. Inorganic Chemistry, 2020, 59, 7408-7414.	4.0	9

#	Article	IF	CITATIONS
37	Application of modified styrene-butadiene-rubber-based latex binder to high-voltage operating LiCoO2 composite electrodes for lithium-ion batteries. Journal of Power Sources, 2020, 468, 228332.	7.8	27
38	Unveiling pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries. Electrochimica Acta, 2020, 354, 136647.	5.2	50
39	Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chemistry of Materials, 2020, 32, 2961-2977.	6.7	150
40	Research Development on K-Ion Batteries. Chemical Reviews, 2020, 120, 6358-6466.	47.7	804
41	Electrolytes and Interphases in Sodiumâ€Based Rechargeable Batteries: Recent Advances and Perspectives. Advanced Energy Materials, 2020, 10, 2000093.	19.5	254
42	(Invited) Research Development on K-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 25-25.	0.0	0
43	Effect of Particle Size and Anion Vacancies on Electrochemical Performances of Potassium Manganese Hexacyanoferrate for Potassium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 170-170.	0.0	0
44	(Invited) Sodium Insertion Carbon Materials As "Beyond Li-GIC― ECS Meeting Abstracts, 2020, MA2020-02, 559-559.	0.0	0
45	Stable and Unstable Diglyme-Based Electrolytes for Batteries with Sodium or Graphite as Electrode. ACS Applied Materials & Interfaces, 2019, 11, 32844-32855.	8.0	77
46	Removal of strontium from aqueous solutions using scallop shell powder. Journal of the Ceramic Society of Japan, 2019, 127, 111-116.	1.1	6
47	A Layered Inorganic–Organic Open Framework Material as a 4 V Positive Electrode with Highâ€Rate Performance for Kâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1902528.	19.5	37
48	Application of Acrylicâ€Rubberâ€Based Latex Binder to Highâ€Voltage Spinel Electrodes of Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 5070-5079.	3.4	23
49	Systematic Study on Materials for Lithium-, Sodium-, and Potassium-Ion Batteries. Electrochemistry, 2019, 87, 312-320.	1.4	11
50	Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using 23Na nuclear magnetic resonance. Carbon, 2019, 145, 712-715.	10.3	33
51	Lithium Magnesium Tungstate Solid as an Additive into Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ Electrodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5430-A5436.	2.9	9
52	Optimizing Micrometer-Sized Sn Powder Composite Electrodes for Sodium-Ion Batteries. Electrochemistry, 2019, 87, 70-77.	1.4	4
53	Potassium Metal as Reliable Reference Electrodes of Nonaqueous Potassium Cells. Journal of Physical Chemistry Letters, 2019, 10, 3296-3300.	4.6	93
54	A New Emerging Technology: Naâ€ion Batteries. Small Methods, 2019, 3, 1900184.	8.6	37

#	Article	IF	CITATIONS
55	States of thermochemically or electrochemically synthesized NaxPy compounds analyzed by solid state 23Na and 31P nuclear magnetic resonance with theoretical calculation. Journal of Power Sources, 2019, 413, 418-424.	7.8	11
56	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	14.2	537
57	Polyanionic Compounds for Potassiumâ€ion Batteries. Chemical Record, 2019, 19, 735-745.	5.8	102
58	KPF6-KFSA Binary Salt Electrolytes for 4 V-Class Potassium Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
59	(Invited) On the NaMeO2 (Me = 3d metal) for Na-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
60	2 V-Class Aqueous Multi-Ion Batteries Realized By Superconcentrated Na/K Electrolytes. ECS Meeting Abstracts, 2019, , .	0.0	0
61	(Keynote) Polyanionic Compounds for K-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
62	K2[(VO)2(HPO4)2(C2O4)] and K x VOPO4 as 4 V-Class Positive Electrode Materials for K-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
63	(Invited) Functional Binders for Li-, Na-, and K-Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
64	Poly-Î ³ -glutamate Binder To Enhance Electrode Performances of P2-Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10986-10997.	8.0	53
65	Effect of diphenylethane as an electrolyte additive to enhance high-temperature durability of LiCoO2/graphite cells. Electrochimica Acta, 2018, 270, 120-128.	5.2	7
66	Towards Kâ€lon and Naâ€lon Batteries as "Beyond Liâ€lonâ€: Chemical Record, 2018, 18, 459-479.	5.8	665
67	Unraveling the Role of Doping in Selective Stabilization of NaMnO ₂ Polymorphs: Combined Theoretical and Experimental Study. Chemistry of Materials, 2018, 30, 1257-1264.	6.7	24
68	Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. Journal of Power Sources, 2018, 378, 322-330.	7.8	120
69	The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1100-1106.	6.0	5
70	Effect of Binary Hydrophilic Binders of SBR Latex and Water-Soluble Polymer on Gas-Diffusion Biocathode Performance. Journal of the Electrochemical Society, 2018, 165, F1369-F1375.	2.9	2
71	The Mechanism of Electro-Catalytic Oxidation of Glucose on Manganese Dioxide Electrode Used for Amperometric Glucose Detection. Journal of the Electrochemical Society, 2018, 165, H742-H749.	2.9	9
72	Multiâ€Enzyme Immobilized Anodes Utilizing Maltose Fuel for Biofuel Cell Applications. ChemElectroChem, 2018, 5, 2271-2278.	3.4	18

#	Article	IF	CITATIONS
73	Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon, 2018, 137, 165-173.	10.3	100
74	Synthesis and Electrochemical Performance of C-Base-Centered Lepidocrocite-like Titanates for Na-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3630-3635.	5.1	12
75	Concentration Effect of Fluoroethylene Carbonate on the Formation of Solid Electrolyte Interphase Layer in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 28525-28532.	8.0	66
76	Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chemical Communications, 2018, 54, 8387-8390.	4.1	159
77	Insights into Li ⁺ , Na ⁺ , and K ⁺ Intercalation in Lepidocrocite-Type Layered TiO ₂ Structures. ACS Applied Energy Materials, 2018, 1, 2078-2086.	5.1	31
78	Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. Journal of Materials Chemistry A, 2018, 6, 16844-16848.	10.3	131
79	Electrochemistry and Solidâ€6tate Chemistry of NaMeO ₂ (Me = 3d Transition Metals). Advanced Energy Materials, 2018, 8, 1703415.	19.5	255
80	Layered P2-Na2/3Co1/2Ti1/2O2 as a high-performance cathode material for sodium-ion batteries. Journal of Power Sources, 2017, 342, 998-1005.	7.8	46
81	A novel K-ion battery: hexacyanoferrate(<scp>ii</scp>)/graphite cell. Journal of Materials Chemistry A, 2017, 5, 4325-4330.	10.3	396
82	A Reversible Phase Transition for Sodium Insertion in Anatase TiO ₂ . Chemistry of Materials, 2017, 29, 1836-1844.	6.7	68
83	Synthesis of hard carbon from argan shells for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9917-9928.	10.3	224
84	KVPO ₄ F and KVOPO ₄ toward 4 volt-class potassium-ion batteries. Chemical Communications, 2017, 53, 5208-5211.	4.1	262
85	"Natto―Binder of Poly-γ-glutamate Enabling to Enhance Silicon/Graphite Composite Electrode Performance for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 6343-6355.	6.7	56
86	P2- and P3-K _x CoO ₂ as an electrochemical potassium intercalation host. Chemical Communications, 2017, 53, 3693-3696.	4.1	214
87	Theoretical Analysis of Interactions between Potassium lons and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium lons. Journal of the Electrochemical Society, 2017, 164, A54-A60.	2.9	276
88	P′2-Na _{2/3} Mn _{0.9} Me _{0.1} O ₂ (Me = Mg, Ti, Co, Ni, Cu, and) T Materials, 2017, 29, 8958-8962.	j ETQq0 0 6.7	0 rgBT /Ove 124
89	All-solid-state ion-selective electrodes with redox-active lithium, sodium, and potassium insertion materials as the inner solid-contact layer. Analyst, The, 2017, 142, 3857-3866.	3.5	20
	Origin of Enhanced Capacity Retention of P2-Type		

Na_{2/3}Ni_{1/3-}<i>_x</i>Mn_{2/3}Cu<i>_x</i>O<sub>2</gub>for 62
Na-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2368-A2373.

#	Article	IF	CITATIONS
91	High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries. Journal of Power Sources, 2017, 363, 404-412.	7.8	52
92	Hard Carbons Prepared by Pyrolyzing Date's Pits for Sodium Ion Batteries. , 2017, , .		0
93	Understanding the Structural Evolution and Redox Mechanism of a NaFeO ₂ –NaCoO ₂ Solid Solution for Sodiumâ€ion Batteries. Advanced Functional Materials, 2016, 26, 6047-6059.	14.9	132
94	Special proceedings of the Symposium A: "Advances in energy storage systems: lithium batteries, supercapacitors and beyondâ€; during ICMAT 2015, June 28–July 3, Singapore. Journal of Solid State Electrochemistry, 2016, 20, 1819-1820.	2.5	1
95	Impact of the Cut-Off Voltage on Cyclability and Passive Interphase of Sn-Polyacrylate Composite Electrodes for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 15017-15026.	3.1	40
96	Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nature Communications, 2016, 7, 13814.	12.8	330
97	Sodium and Manganese Stoichiometry of P2â€Type Na _{2/3} MnO ₂ . Angewandte Chemie, 2016, 128, 12952-12955.	2.0	41
98	Iron phosphide as negative electrode material for Na-ion batteries. Electrochemistry Communications, 2016, 69, 11-14.	4.7	82
99	Preparation and electrochemical properties of Li ₂ MoO ₃ /C composites for rechargeable Li-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 28556-28563.	2.8	19
100	Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries. Current Opinion in Chemical Engineering, 2016, 13, 36-44.	7.8	51
101	Effect of Hexafluorophosphate and Fluoroethylene Carbonate on Electrochemical Performance and the Surface Layer of Hard Carbon for Sodiumâ€ion Batteries. ChemElectroChem, 2016, 3, 1856-1867.	3.4	147
102	Sodium and Manganese Stoichiometry of P2â€Type Na _{2/3} MnO ₂ . Angewandte Chemie - International Edition, 2016, 55, 12760-12763.	13.8	217
103	Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. Journal of Materials Chemistry A, 2016, 4, 13183-13193.	10.3	83
104	Thermal Stability of Na _{<i>x</i>} CrO ₂ for Rechargeable Sodium Batteries; Studies by High-Temperature Synchrotron X-ray Diffraction. ACS Applied Materials & Interfaces, 2016, 8, 32292-32299.	8.0	36
105	Synthesis and electrochemical properties of Li _{1.3} Nb _{0.3} V _{0.4} O ₂ as a positive electrode material for rechargeable lithium batteries. Chemical Communications, 2016, 52, 2051-2054.	4.1	76
106	Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface. Chemistry of Materials, 2016, 28, 1625-1635.	6.7	238
107	Synthesis and Electrochemical Properties of Li ₄ MoO ₅ –NiO Binary System as Positive Electrode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 2016, 28, 416-419.	6.7	55
108	Understanding Particle-Size-Dependent Electrochemical Properties of Li ₂ MnO ₃ -Based Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2016, 120, 875-885.	3.1	77

#	Article	IF	CITATIONS
109	Degradation Mechanisms of Electric Double Layer Capacitors with Activated Carbon Electrodes on High Voltage Exposure. Electrochemistry, 2015, 83, 609-618.	1.4	12
110	Crystal Structures and Electrochemical Properties of P2/O2-type Mn-based Layered Oxides. Hamon, 2015, 25, 264-267.	0.0	0
111	High-capacity electrode materials for rechargeable lithium batteries: Li ₃ NbO ₄ -based system with cation-disordered rocksalt structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7650-7655.	7.1	400
112	Electrochemical lithiation performance and characterization of silicon–graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders. Physical Chemistry Chemical Physics, 2015, 17, 3783-3795.	2.8	72
113	New Insight into Structural Evolution in Layered NaCrO ₂ during Electrochemical Sodium Extraction. Journal of Physical Chemistry C, 2015, 119, 166-175.	3.1	152
114	Improved High-Temperature Performance and Surface Chemistry of Graphite/LiMn2O4 Li-Ion Cells by Fluorosilane-Based Electrolyte Additive. Electrochimica Acta, 2015, 160, 347-356.	5.2	31
115	Electrochemical Properties of LiCoO ₂ Electrodes with Latex Binders on High-Voltage Exposure. Journal of the Electrochemical Society, 2015, 162, A538-A544.	2.9	80
116	Fluorine Chemistry for Negative Electrode in Sodium and Lithium Ion Batteries. , 2015, , 387-414.		11
117	Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochemistry Communications, 2015, 60, 172-175.	4.7	882
118	Review—Practical Issues and Future Perspective for Na-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2538-A2550.	2.9	579
119	Improvement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Hydrophilic Binder. Journal of the Electrochemical Society, 2015, 162, F1425-F1430.	2.9	11
120	Effect of Lithium in Transition Metal Layers of Ni-Rich Cathode Materials on Electrochemical Properties. Journal of the Electrochemical Society, 2015, 162, A2313-A2318.	2.9	16
121	Acrylic Acid-Based Copolymers as Functional Binder for Silicon/Graphite Composite Electrode in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2245-A2249.	2.9	35
122	Layered oxides as positive electrode materials for Na-ion batteries. MRS Bulletin, 2014, 39, 416-422.	3.5	208
123	Study of electrochemical alkali insertion into carbonaceous materials. , 2014, , .		1
124	Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Science and Technology of Advanced Materials, 2014, 15, 043501.	6.1	199
125	P2-type Na <inf>x</inf> [Fe,Ni,Mn]O <inf>2</inf> for high capacity Na-ion batteries. , 2014, , .		0

Rechargeable Na-ion batteries for large format applications. , 2014, , .

0

#	Article	IF	CITATIONS
127	Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surfaceâ€Stabilization Mechanism in Aprotic Solvent. ChemElectroChem, 2014, 1, 580-589.	3.4	196
128	New O2/P2â€ŧype Liâ€Excess Layered Manganese Oxides as Promising Multiâ€Functional Electrode Materials for Rechargeable Li/Na Batteries. Advanced Energy Materials, 2014, 4, 1301453.	19.5	307
129	Research Development on Sodium-Ion Batteries. Chemical Reviews, 2014, 114, 11636-11682.	47.7	4,970
130	A new electrode material for rechargeable sodium batteries: P2-type Na _{2/3} [Mg _{0.28} Mn _{0.72}]O ₂ with anomalously high reversible capacity. Journal of Materials Chemistry A, 2014, 2, 16851-16855.	10.3	284
131	P2-type Na _{2/3} Ni _{1/3} Mn _{2/3â^`x} Ti _x O ₂ as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 2014, 50, 3677-3680.	4.1	334
132	Double-layered polyion complex for application to biosensing electrodes. Electrochemistry Communications, 2014, 47, 88-91.	4.7	5
133	Negative electrodes for Na-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 15007.	2.8	555
134	Fabrication of Carbonâ€Feltâ€Based Multiâ€Enzyme Immobilized Anodes to Oxidize Sucrose for Biofuel Cells. ChemPhysChem, 2014, 15, 2145-2151.	2.1	27
135	Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochemistry Communications, 2014, 44, 66-69.	4.7	182
136	Na2CoPO4F as a High-voltage Electrode Material for Na-ion Batteries. Electrochemistry, 2014, 82, 909-911.	1.4	49
137	Manganese Oxides for Supercapacitors. , 2014, , 317-338.		0
138	A Comparative Study of LiCoO ₂ Polymorphs: Structural and Electrochemical Characterization of O2-, O3-, and O4-type Phases. Inorganic Chemistry, 2013, 52, 9131-9142.	4.0	51
139	Preparation of Carbonaceous Materials in Fused Carbonate Salts. , 2013, , 331-354.		1
140	NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. Journal of Power Sources, 2013, 225, 137-140.	7.8	165
141	A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Advances, 2013, 3, 3857.	3.6	104
142	NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochemistry Communications, 2013, 34, 60-63.	4.7	262
143	Synthesis and Electrode Performance of O3-Type NaFeO ₂ -NaNi _{1/2} Mn _{1/2} O ₂ Solid Solution for Rechargeable Sodium Batteries. Journal of the Electrochemical Society, 2013, 160, A3131-A3137.	2.9	182
144	Thermal Behavior of the Layered Oxide Li2/3Co2/3Mn1/3O2 Obtained by Ion Exchange from the P2-Type Na2/3Co2/3Mn1/3O2 Phase. Journal of Physical Chemistry C, 2013, 117, 3264-3271.	3.1	13

#	Article	IF	CITATIONS
145	Structural and Electrochemical Characterizations on Li ₂ MnO ₃ -LiCoO ₂ -LiCrO ₂ System as Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2013, 160, A39-A45.	2.9	51
146	Efficient Electrolyte Additives of Phosphate, Carbonate, and Borate to Improve Redox Capacitor Performance of Manganese Oxide Electrodes. Journal of the Electrochemical Society, 2013, 160, A1952-A1961.	2.9	22
147	Redox-Active Alkali Insertion Materials as Inner Contact Layer in All-Solid-State Ion-Selective Electrodes. ECS Transactions, 2013, 50, 279-287.	0.5	10
148	Cross-Linked Poly(acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite Negative Electrodes in Li-Ion Batteries. ECS Electrochemistry Letters, 2012, 2, A17-A20.	1.9	59
149	2.ãfŠãf^ãfªã,¦ãfã,ª,ªãf³äºŒæ¬¡é›»æ±â€"æ–°ã⊷ã"é›»æ±å応系ãक़҈®æŒ'æ^¦â€". Electrochemistry, 2012,	80,493-97.	2
150	Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries. Electrochemistry, 2012, 80, 716-719.	1.4	329
151	A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries. Electrochemistry, 2012, 80, 80-84.	1.4	72
152	Study on the Reversible Electrode Reaction of Na _{1–<i>x</i>} Ni _{0.5} Mn _{0.5} O ₂ for a Rechargeable Sodium-Ion Battery. Inorganic Chemistry, 2012, 51, 6211-6220.	4.0	593
153	Cropâ€Derived Polysaccharides as Binders for Highâ€Capacity Silicon/Graphiteâ€Based Electrodes in Lithiumâ€Ion Batteries. ChemSusChem, 2012, 5, 2307-2311.	6.8	92
154	Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochemistry Communications, 2012, 21, 65-68.	4.7	384
155	High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy and Environmental Science, 2012, 5, 9014.	30.8	156
156	Electrochemical behavior and structural change of spinel-type Li[Li Mn2â^']O4 (x= 0 and 0.2) in sodium cells. Electrochimica Acta, 2012, 82, 296-301.	5.2	50
157	Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Craphite Composite Negative Electrodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 1380-1389.	3.1	203
158	P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable NaÂbatteries. Nature Materials, 2012, 11, 512-517.	27.5	1,884
159	Nano-structured birnessite prepared by electrochemical activation of manganese(III)-based oxides for aqueous supercapacitors. Electrochimica Acta, 2012, 59, 455-463.	5.2	46
160	Effect of heat-treatment process on FeF3 nanocomposite electrodes for rechargeable Li batteries. Journal of Materials Chemistry, 2011, 21, 10035.	6.7	69
161	Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior. Dalton Transactions, 2011, 40, 1846.	3.3	33
162	Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries. ACS Applied Materials & Interfaces, 2011, 3, 4165-4168.	8.0	595

#	Article	IF	CITATIONS
163	Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 13487-13495.	3.1	344
164	Neutralized Poly(Acrylic Acid) as Polymer Binder for High Capacity Silicon Negative Electrodes. ECS Meeting Abstracts, 2011, , .	0.0	1
165	Polyacrylate as Functional Binder for Silicon and Graphite Composite Electrode in Lithium-Ion Batteries. Electrochemistry, 2011, 79, 6-9.	1.4	52
166	Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochemistry Communications, 2011, 13, 1225-1228.	4.7	244
167	Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li ₂ MnO ₃ â^²LiCo _{1/3} Ni _{1/3} Mn _{1/3} O ₂ Journal of the American Chemical Society, 2011, 133, 4404-4419.	. 13.7	1,066
168	Nanostructured TiO ₂ and Its Application in Lithiumâ€lon Storage. Advanced Functional Materials, 2011, 21, 3231-3241.	14.9	154
169	Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard arbon Electrodes and Application to Naâ€Ion Batteries. Advanced Functional Materials, 2011, 21, 3859-3867.	14.9	1,717
170	Graphiteâ€ S iliconâ€Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Liâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 759-765.	19.5	140
171	Higher energy and safety of lithium-ion batteries with ionic liquid electrolyte. Proceedings of SPIE, 2010, , .	0.8	2
172	Hydrothermal Synthesis and Characterization of Li2FeSiO4 as Positive Electrode Materials for Li-Ion Batteries. Electrochemistry, 2010, 78, 363-366.	1.4	28
173	Fast redox of composite electrode of nitroxide radical polymer and carbon with polyacrylate binder. Journal of Power Sources, 2010, 195, 6212-6217.	7.8	53
174	Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. Journal of Power Sources, 2010, 195, 6069-6074.	7.8	122
175	High-temperature X-ray diffraction study of crystallization and phase segregation on spinel-type lithium manganese oxides. Journal of Solid State Chemistry, 2010, 183, 234-241.	2.9	21
176	Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochemistry Communications, 2010, 12, 355-358.	4.7	509
177	Alkali Chloride Coating for Graphite Electrode of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A1375.	2.9	14
178	Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe[sub 3]O[sub 4] and α-Fe[sub 2]O[sub 3] for Rechargeable Batteries. Journal of the Electrochemical Society, 2010, 157, A60.	2.9	152
179	Properties of the Ionic Liquid Electrolytes Containing Glymes as Additives for Rechargeable Lithium Batteries. ECS Meeting Abstracts, 2010, , .	0.0	0
180	Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2009, 12, A107.	2.2	97

#	Article	IF	CITATIONS
181	Structural and electrochemical behaviors of metastable Li2/3[Ni1/3Mn2/3]O2 modified by metal element substitution. Electrochimica Acta, 2009, 54, 2353-2359.	5.2	14
182	Electrochemical formation of carbon nano-powders with various porosities in molten alkali carbonates. Electrochimica Acta, 2009, 54, 4566-4573.	5.2	110
183	Functional interface of polymer modified graphite anode. Journal of Power Sources, 2009, 189, 197-203.	7.8	111
184	Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Transactions, 2009, 16, 43-55.	0.5	213
185	A New Polymorph of Layered LiCoO2. Chemistry Letters, 2009, 38, 954-955.	1.3	22
186	Polyacrylate as Modifier for Graphite/Electrolyte Interface. ECS Transactions, 2008, 11, 63-70.	0.5	9
187	Enhanced supercapacitive behaviors of birnessite. Electrochemistry Communications, 2008, 10, 1435-1437.	4.7	94
188	Alkali carbonate-coated graphite electrode for lithium-ion batteries. Carbon, 2008, 46, 1184-1193.	10.3	40
189	High temperature X-ray diffractive study of spinel-type lithium manganese oxides. Solid State Ionics, 2008, 179, 1783-1787.	2.7	7
190	Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes. Electrochemistry Communications, 2008, 10, 1276-1279.	4.7	50
191	Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochimica Acta, 2008, 53, 3084-3093.	5.2	151
192	Structural, Electrochemical, and Thermal Aspects of Li[(Ni[sub 0.5]Mn[sub 0.5])[sub 1â^'x]Co[sub x]]O[sub 2]â€,(0≤â‰0.2) for High-Voltage Application of Lithium-Ion Secondary Batteries. Journal of the Electrochemical Society, 2008, 155, A374.	2.9	31
193	Polyion Complex Nanocomposite Electrode Incorporating Enzyme and Carbon Nanotube for Biofuel Cells. Electrochemistry, 2008, 76, 55-58.	1.4	19
194	Optimization of Enzyme Anode and Cathode with Polyion Complex for the Application to Biofuel Cells. Electrochemistry, 2008, 76, 619-624.	1.4	16
195	Electrochemistry of Graphite in Li and Na Salt Codissolving Electrolyte for Rechargeable Batteries. Journal of the Electrochemical Society, 2007, 154, A322.	2.9	48
196	Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2as Positive Electrode Materials for Lithium-Ion Secondary Batteries. Journal of Physical Chemistry C, 2007, 111, 4061-4067.	3.1	163
197	Crystallization of LiMn2O4 observed with high temperature X-ray diffraction. Journal of Power Sources, 2007, 174, 756-760.	7.8	14
198	Synthesis of hollandite-type LiyMn1â^'xCoxO2 (x=0–0.15) by Li+ ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes. Journal of Power Sources, 2007, 174, 932-937.	7.8	10

#	Article	IF	CITATIONS
199	Electrochemical and In Situ XAFS-XRD Investigation of Nb[sub 2]O[sub 5] for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2006, 153, A583.	2.9	159
200	Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties. Chemistry of Materials, 2006, 18, 1658-1666.	6.7	82
201	Improvement of Electrochemical Capability of Sputtered Silicon Film Anode for Rechargeable Lithium Batteries. Bulletin of the Chemical Society of Japan, 2006, 79, 154-162.	3.2	13
202	Calcination Synthesis of Birnessite Type Manganese Dioxides Doped with Cobalt for Rechargeable Li Batteries. Electrochemistry, 2006, 74, 28-31.	1.4	3
203	Improvement of cycling performance of Li1.1Mn1.9O4 at 60°C by NiO addition for Li-ion secondary batteries. Electrochimica Acta, 2006, 51, 5912-5919.	5.2	33
204	Hydrothermal phase formation of orthorhombic LiMnO2 and its derivatives as lithium intercalation compounds. Solid State Ionics, 2006, 177, 733-739.	2.7	17
205	Preparation of carbon nanoparticles from electrolysis of molten carbonates and use as anode materials in lithium-ion batteries. Solid State Ionics, 2006, 177, 869-875.	2.7	59
206	Improved electrochemical properties of Li1+x(Ni0.3Co0.4Mn0.3)O2â^'δ (x=0, 0.03 and 0.06) with lithium excess composition prepared by a spray drying method. Electrochimica Acta, 2006, 52, 1483-1490.	5.2	18
207	Impact of Sodium Salt Coating on a Graphite Negative Electrode for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2006, 9, A130.	2.2	33
208	Improvement of structural integrity and battery performance of LiNi0.5Mn0.5O2 by Al and Ti doping. Journal of Power Sources, 2005, 146, 645-649.	7.8	55
209	Opposite influences of K+ versus Na+ ions as electrolyte additives on graphite electrode performance. Journal of Power Sources, 2005, 146, 166-170.	7.8	30
210	Synthesis of metal-doped todorokite-type MnO2 and its cathode characteristics for rechargeable lithium batteries. Journal of Power Sources, 2005, 146, 310-314.	7.8	36
211	Preparation and electrochemical performance of composite oxide of alpha manganese dioxide and Li–Mn–O spinel. Electrochimica Acta, 2005, 50, 2297-2305.	5.2	20
212	Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 2005, 50, 4800-4806.	5.2	90
213	Surface-fluorinated graphite anode materials for Li-ion batteries. Journal of Fluorine Chemistry, 2005, 126, 1111-1116.	1.7	59
214	Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for Câ^•LiMn[sub 2]O[sub 4] Li-Ion Cells. Journal of the Electrochemical Society, 2005, 152, A937.	2.9	99
215	Synthesis of Hollandite-Type K[sub y](Mn[sub 1â^'x]M[sub x])O[sub 2] (M=Co, Fe) by Oxidation of Mn(II) Precursor and Preliminary Results on Electrode Characteristics in Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters, 2005, 8, A471.	2.2	12
216	Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties. Chemistry of Materials, 2005, 17, 2427-2435.	6.7	85

#	Article	IF	CITATIONS
217	Role of Alumina Coating on Liâ^'Niâ^'Coâ^'Mnâ^'O Particles as Positive Electrode Material for Lithium-Ion Batteries. Chemistry of Materials, 2005, 17, 3695-3704.	6.7	493
218	Thermal Structure Modification of Birnessite-type Manganese Oxide Doped with Cobalt and its Properties in Lithium Secondary Batteries. Electrochemistry, 2005, 73, 290-297.	1.4	0
219	Characterization of R.F. Magnetron Sputtered Vanadium Oxide Thin Films and Intercalation of Lithium in the Oxide Films. Electrochemistry, 2004, 72, 261-265.	1.4	5
220	Effect of excess lithium on LiNi0.5Mn0.5O2+l̂´and its electrochemistry as lithium insertion material. Solid State Ionics, 2004, 170, 139-144.	2.7	33
221	Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochimica Acta, 2004, 49, 4213-4222.	5.2	189
222	Synthesis of the Hollandite-type MnO ₂ by Calcinating the Birnessite-type MnO ₂ and its Electrochemical Properties as Electrodes for Rechargeable Lithium Batteries. Electrochemistry, 2004, 72, 688-693.	1.4	9
223	Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive. Electrochemistry Communications, 2003, 5, 962-966.	4.7	83
224	Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source. Journal of Power Sources, 2003, 119-121, 914-917.	7.8	25
225	Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 378-382.	7.8	100
226	Emulsion drying preparation of layered LiMnxCr1â°xO2 solid solution and its application to Li-ion battery cathode material. Journal of Power Sources, 2003, 119-121, 211-215.	7.8	16
227	Structural Investigation of Layered Li[sub 1â^'Î]Mn[sub x]Cr[sub 1â^'x]O[sub 2] by XANES and In Situ XRD Measurements. Journal of the Electrochemical Society, 2003, 150, A1560.	2.9	33
228	Lithium Insertion into Carbonaceous Anode Materials Prepared by Electrolysis of Molten Li-K-Na Carbonates. Journal of the Electrochemical Society, 2003, 150, G67.	2.9	46
229	Emulsion Drying Preparation of LiFePO4/C Composite and Its Enhanced High-rate Performance at 50 °C. Chemistry Letters, 2003, 32, 566-567.	1.3	22
230	Electrochemical Characteristics and Manganese Dissolution of Spinel Li _{1.05} M _{0.2} Mn _{1.75} O _{4(M = Al, Co, and Cr) Cathode for Rechargeable Lithium Ion Batteries. Electrochemistry, 2003, 71, 1236-1239.}	gt; 1.4	4
231	Preparation of LiFePO ₄ as Lithium Intercalation Compound by Emulsion Drying Method. Electrochemistry, 2003, 71, 177-179.	1.4	4
232	Hydrothermal Synthesis of Orthorhombic LiCo[sub x]Mn[sub 1â^'x]O[sub 2] and Their Structural Changes during Cycling. Journal of the Electrochemical Society, 2002, 149, A1349.	2.9	40
233	2-Vinylpyridine as Film-forming Additve to Suppress the Degradation of Carbon Anode by Dissolved Manganese for C/LiMn2O4Rechargable Battery. Chemistry Letters, 2002, 31, 1236-1237.	1.3	19
234	Synthesis and Structural Characterization of Carbon Powder by Electrolytic Reduction of Molten Li[sub 2]CO[sub 3]-Na[sub 2]CO[sub 3]-K[sub 2]CO[sub 3]. Journal of the Electrochemical Society, 2002, 149, D72.	2.9	69

#	Article	IF	CITATIONS
235	Preparation of layered LiMnxCr1â^'xO2 solid solution by emulsion drying method as lithium intercalation compounds. Electrochemistry Communications, 2002, 4, 397-401.	4.7	24
236	Molybdenum oxides synthesized by hydrothermal treatment of A2MoO4 (A=Li, Na, K) and electrochemical lithium intercalation into the oxides. Solid State Ionics, 2002, 152-153, 319-326.	2.7	32
237	Synthetic optimization of orthorhombic LiMnO2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery. Solid State Ionics, 2002, 150, 199-205.	2.7	31
238	Neutron powder diffraction studies of LiMn2â^'yAlyO4 synthesized by the emulsion drying method. Solid State Ionics, 2002, 149, 47-52.	2.7	52
239	Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries. Solid State Ionics, 2002, 152-153, 311-318.	2.7	43
240	Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochimica Acta, 2002, 47, 1229-1239.	5.2	262
241	Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochimica Acta, 2002, 47, 2543-2549.	5.2	163
242	Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. Electrochimica Acta, 2002, 47, 3287-3295.	5.2	76
243	Synthesis of Nanocrystalline Fe ₂ O ₃ for Lithium Secondary Battery Cathode. Electrochemistry, 2002, 70, 506-510.	1.4	38
244	Theoretical Approach of the Lithium Intercalation/Deintercalation Process in Host Materials. Electrochemistry, 2001, 69, 592-597.	1.4	2
245	Manganese Dissolution from Lithium Doped Li-Mn-O Spinel Cathode Materials into Electrolyte Solution. Electrochemistry, 2001, 69, 784-787.	1.4	44
246	Cobalt Doped Orthorhombic LiMnO2as Cathode Materials for Lithium-Ion Batteries. Chemistry Letters, 2001, 30, 1114-1115.	1.3	4
247	Orthorhombic LiMnO2as a High Capacity Cathode for Lithium-Ion Battery Synthesized by Hydrothermal Route at 170 °C. Chemistry Letters, 2001, 30, 80-81.	1.3	19
248	Synthesis of Orthorhombic LiMnO2as a High Capacity Cathode for Li-Ion Battery by Emulsion Drying Method. Chemistry Letters, 2001, 30, 574-575.	1.3	9
249	Synthesis of Nanostructured Carbon Material by Electroreduction in Fused Alkali Carbonates. Chemistry Letters, 2001, 30, 714-715.	1.3	18
250	Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode. Journal of Power Sources, 2001, 97-98, 515-517.	7.8	59
251	Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn2O4 positive and V2O5 negative electrodes. Journal of Power Sources, 2001, 97-98, 798-800.	7.8	36
252	Effects of Al doping on the microstructure of LiCoO2 cathode materials. Solid State Ionics, 2001, 139, 47-56.	2.7	221

#	Article	IF	CITATIONS
253	First Principles Study on Li Deintercalation Effect in Orthorhombic LiMnO2. Japanese Journal of Applied Physics, 2001, 40, 6878-6883.	1.5	1
254	Enhanced Structural Stability and Cyclability of Al-Doped LiMn[sub 2]O[sub 4] Spinel Synthesized by the Emulsion Drying Method. Journal of the Electrochemical Society, 2001, 148, A482.	2.9	183
255	ã,ãf¼ãf¯ãf¼ãf‰ã€Œè‹¥æ‰‹ç"究者〕 Electrochemistry, 2001, 69, 132-133.	1.4	0
256	Electrochemical Behavior of Graphite Electrode for Lithium Ion Batteries in Mn and Co Additive Electrolytes. Chemistry Letters, 2000, 29, 1154-1155.	1.3	55
257	Capacity fading of LiMn2O4 electrode synthesized by the emulsion drying method. Journal of Power Sources, 2000, 90, 103-108.	7.8	55
258	Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide. Solid State Ionics, 2000, 135, 193-197.	2.7	29
259	Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine. Sensors and Actuators B: Chemical, 2000, 65, 58-63.	7.8	40
260	Synthesis of layered MnO2 by calcination of KMnO4 for rechargeable lithium battery cathode. Electrochimica Acta, 2000, 46, 31-37.	5.2	85
261	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 159-163.	2.9	10
262	Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method. Journal of Applied Electrochemistry, 2000, 30, 1081-1085.	2.9	44
263	Title is missing!. Journal of Applied Electrochemistry, 2000, 30, 1179-1182.	2.9	43
264	High Sensitivity Flow Injection Analysis of Urea Using Composite Electropolymerized Polypyrroleâ€Polyion Complex Film. Journal of the Electrochemical Society, 1999, 146, 615-619.	2.9	28
265	Thermodynamics and Kinetics of Lithium Intercalation into Nb2 O 5 Electrodes for a 2 V Rechargeable Lithium Battery. Journal of the Electrochemical Society, 1999, 146, 3203-3210.	2.9	105
266	Electrochemical Lithium Intercalation into Nb2O5Cathode for 2 V Class-Secondary Lithium Batteries. Materials Research Society Symposia Proceedings, 1999, 575, 39.	0.1	3
267	Assessment of lithium ion doping into low crystallized carbonaceous materials using molecular orbital calculations. Electrochimica Acta, 1998, 43, 3127-3133.	5.2	4
268	Biological determination of Ag(I) ion and arginine by using the composite film of electroinactive polypyrrole and polyion complex. Sensors and Actuators B: Chemical, 1998, 52, 78-83.	7.8	28
269	Impedance analysis of electrodeposited insulating polypyrrole. Journal of Electroanalytical Chemistry, 1998, 453, 19-23.	3.8	20
270	Flow injection analysis of potassium using an all-solid-state potassium-selective electrode as a detector. Talanta, 1998, 46, 1293-1297.	5.5	30

#	Article	IF	CITATIONS
271	Highly Sensitive Microbiosensor for Creatinine Based on the Combination of Inactive Polypyrrole with Polyion Complexes. Journal of the Electrochemical Society, 1998, 145, 406-408.	2.9	84
272	Electrochemical Formation of Polypyrrole/ SiO2 Composite Film and Its Application to Organic Electroluminescence Devices. Journal of the Electrochemical Society, 1998, 145, 1126-1130.	2.9	15
273	Fabrication of Nickel Dots Using Selective Electroless Deposition on Silicon Wafer. Chemistry Letters, 1998, 27, 657-658.	1.3	12
274	Synthesis of Hexagonal Tungsten Trioxide Thin Film and Electrochemical Lithium Intercalation. Electrochemistry, 1998, 66, 1223-1229.	0.3	3
275	Organic Electroluminescence Device Based on an Electrodeposited Poly(3â€substituted thiophen) Film. Journal of the Electrochemical Society, 1997, 144, 742-748.	2.9	61
276	Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochimica Acta, 1997, 42, 383-388.	5.2	84
277	Fabrication of Porous Silicon-based All-solid State Multicolor EL Device with Hole Injecting Film Formed by Electropolymerization. Chemistry Letters, 1996, 25, 653-654.	1.3	Ο
278	High-sensitivity urea sensor based on the composite film of electroinactive polypyrrole with polyion complex. Sensors and Actuators B: Chemical, 1996, 36, 463-469.	7.8	51
279	Application of Electropolymerized Poly(thiophen derivative)/NBR Composite Film to an Electroluminescence Emission Layer. Chemistry Letters, 1995, 24, 923-924.	1.3	4
280	Enhancement Properties of Organic Electroluminescence Device Using Electropolymerized Poly(3-n-octylthiophen) Thin Film. Chemistry Letters, 1995, 24, 1023-1024.	1.3	7