
Jalal Azadmanjiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diverse-shaped tin dioxide nanoparticles within a plastic waste-derived three-dimensional porous carbon framework for super stable lithium-ion storage. Science of the Total Environment, 2022, 815, 152900.	3.9	11
2	Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 4533-4557.	5.2	38
3	InSe:Ge-doped InSe van der Waals heterostructure to enhance photogenerated carrier separation for self-powered photoelectrochemical-type photodetectors. Nanoscale, 2022, 14, 5412-5424.	2.8	9
4	2D Heterostructures for Highly Efficient Photodetectors: From Advanced Synthesis to Characterizations, Mechanisms, and Device Applications. Advanced Photonics Research, 2022, 3, .	1.7	13
5	Flexible, ultralight, and high-energy density electrochemical capacitors using sustainable materials. Electrochimica Acta, 2022, 415, 140239.	2.6	12
6	Stimuli-responsive of magnetic metal-organic frameworks (MMOF): Synthesis, dispersion control, and its tunability into polymer matrix under the augmented-magnetic field for H2 separation and CO2 capturing applications. International Journal of Hydrogen Energy, 2022, 47, 20166-20175.	3.8	4
7	Liquid Metalsâ€Assisted Synthesis of Scalable 2D Nanomaterials: Prospective Sediment Inks for Screenâ€Printed Energy Storage Applications. Advanced Functional Materials, 2021, 31, 2010320.	7.8	26
8	Branched Poly(<scp>l</scp> -lysine)-Derived Nitrogen-Containing Porous Carbon Flake as the Metal-Free Electrocatalyst toward Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 3317-3326.	2.5	13
9	Atomically Thin Nanosheets Confined in 2D Heterostructures: Metalâ€lon Batteries Prospective. Advanced Energy Materials, 2021, 11, 2100451.	10.2	35
10	Functionalized germanane/SWCNT hybrid films as flexible anodes for lithium-ion batteries. Nanoscale Advances, 2021, 3, 4440-4446.	2.2	13
11	Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications. Journal of Applied Polymer Science, 2020, 137, 48338.	1.3	45
12	Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. Small, 2020, 16, e2004900.	5.2	17
13	Production of Cellulose Nanocrystals from Australian Wood Sources. Journal of Nanoscience and Nanotechnology, 2020, 20, 5642-5647.	0.9	2
14	Surface Functionalization of 2D Transition Metal Oxides and Dichalcogenides via Covalent and Non-covalent Bonding for Sustainable Energy and Biomedical Applications. ACS Applied Nano Materials, 2020, 3, 3116-3143.	2.4	67
15	A general approach towards carbonization of plastic waste into a well-designed 3D porous carbon framework for super lithium-ion batteries. Chemical Communications, 2020, 56, 9142-9145.	2.2	49
16	Graphene-Supported 2D transition metal dichalcogenide van der waals heterostructures. Applied Materials Today, 2020, 19, 100600.	2.3	64
17	Molten salts promoting the "controlled carbonization―of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. Journal of Materials Chemistry A, 2019, 7, 22912-22923.	5.2	113
18	Sustainable polylysine conversion to nitrogen ontaining porous carbon flakes: Potential application in supercapacitors. Journal of Applied Polymer Science, 2019, 136, 48214.	1.3	14

JALAL AZADMANJIRI

#	Article	IF	CITATIONS
19	Cellulose Nanocrystals: Production, Functionalization and Advanced Applications. Reviews on Advanced Materials Science, 2019, 58, 1-16.	1.4	59
20	2D layered organic–inorganic heterostructures for clean energy applications. Journal of Materials Chemistry A, 2018, 6, 3824-3849.	5.2	51
21	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126
22	Graphene-supported 2D transition metal oxide heterostructures. Journal of Materials Chemistry A, 2018, 6, 13509-13537.	5.2	103
23	Nanocoutured Metallic Biomaterials and Surface Functionalization of Titanium-Based Alloys for Medical Applications. , 2018, , 17-50.		0
24	Surface Functionalization and Antibacterial Characteristics of the Titanium-Based Metallic Biomaterials at Nanoscale. , 2018, , 167-194.		0
25	Influence of charged defects on the interfacial bonding strength of tantalum- and silver-doped nanograined TiO ₂ . Physical Chemistry Chemical Physics, 2017, 19, 11881-11891.	1.3	10
26	Structural and mechanical properties of magnetron-sputtered Al–Au thin films. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	3
27	Tantalum- and Silver-Doped Titanium Dioxide Nanosheets Film: Influence on Interfacial Bonding Structure and Hardness of the Surface System. Industrial & Engineering Chemistry Research, 2017, 56, 434-439.	1.8	13
28	Nanolaminated composite materials: structure, interface role and applications. RSC Advances, 2016, 6, 109361-109385.	1.7	50
29	Effect of Process Parameters on Dynamic Mechanical Performance of FDM PC/ABS Printed Parts Through Design of Experiment. Journal of Materials Engineering and Performance, 2016, 25, 2922-2935.	1.2	107
30	Enhanced attachment of human mesenchymal stem cells on nanograined titania surfaces. RSC Advances, 2016, 6, 55825-55833.	1.7	13
31	Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment (SMAT). Critical Reviews in Solid State and Materials Sciences, 2015, 40, 164-181.	6.8	85
32	A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications. Journal of Materials Chemistry A, 2014, 2, 3695-3708.	5.2	96
33	The use of plasma treatment for simultaneous carbonization and reduction of iron oxide/polypyrrole core/shell nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	8
34	Phase reduction of coated maghemite (γ-Fe ₂ O ₃) nanoparticles under microwave-induced plasma heating for rapid heat treatment. Journal of Materials Chemistry, 2012, 22, 617-625.	6.7	36
35	Synthesis and electromagnetic interference shielding properties of iron oxide/polypyrrole nanocomposites. Polymer Engineering and Science, 2011, 51, 247-253.	1.5	67
36	A simple microwave-based method for preparation of Fe3O4/carbon composite nanoparticles. Materials Letters, 2010, 64, 1684-1687.	1.3	32

JALAL AZADMANJIRI

#	Article	IF	CITATIONS
37	Structural and electromagnetic properties of Ni–Zn ferrites prepared by sol–gel combustion method. Materials Chemistry and Physics, 2008, 109, 109-112.	2.0	84
38	A Study on the Preparation of Nano-Crystalline Barium Titanate Powder by a Sol-Gel Method. Solid State Phenomena, 2007, 121-123, 53-56.	0.3	1
39	Evaluation of NiFe2O4 ferrite nanocrystalline powder synthesized by a sol–gel auto-combustion method. Journal of Non-Crystalline Solids, 2007, 353, 802-804.	1.5	63
40	Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. Journal of Non-Crystalline Solids, 2007, 353, 4170-4173.	1.5	96
41	Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method. Ceramics International, 2007, 33, 1623-1625.	2.3	71
42	A study on the formation of MnFe2O4 nano-powder by coprecipitation method. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 253-255.	0.8	7
43	Preparation and electromagnetic properties of Ni1ⰒxCuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Materials Letters, 2007, 61, 84-87.	1.3	67
44	The effects of pH and citric acid concentration on the characteristics of nanocrystalline NiFe2O4 powder synthesized by a sol-gel autocombustion method. Physics of Metals and Metallography, 2006, 102, S21-S23.	0.3	9
45	Influence of stoichiometry and calcination condition on the microstructure and phase constitution of NiFe2O4 powders prepared by sol-gel autocombustion method. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3414-3417.	0.8	37
46	Multifunctional Photoelectroactive Platform for CO2 Reduction toward C2+ Products─Programmable Selectivity with a Bioinspired Polymer Coating. ACS Catalysis, 0, , 1558-1571.	5.5	9