
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064605/publications.pdf Version: 2024-02-01

FUEEN INCHAM

#	Article	IF	CITATIONS
1	The role of macrophages in osteolysis of total joint replacement. Biomaterials, 2005, 26, 1271-1286.	11.4	594
2	Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotechnology, 2009, 4, 876-883.	31.5	351
3	PerR Controls Oxidative Stress Resistance and Iron Storage Proteins and Is Required for Virulence in <i>Staphylococcus aureus</i> . Infection and Immunity, 2001, 69, 3744-3754.	2.2	299
4	Effect of size and dose on bone resorption activity of macrophages byin vitro clinically relevant ultra high molecular weight polyethylene particles. Journal of Biomedical Materials Research Part B, 2000, 53, 490-497.	3.1	285
5	In Staphylococcus aureus , Fur Is an Interactive Regulator with PerR, Contributes to Virulence, and Is Necessary for Oxidative Stress Resistance through Positive Regulation of Catalase and Iron Homeostasis. Journal of Bacteriology, 2001, 183, 468-475.	2.2	252
6	Production of self-assembling biomaterials for tissue engineering. Trends in Biotechnology, 2009, 27, 423-433.	9.3	213
7	Production of an Acellular Amniotic Membrane Matrix for Use in Tissue Engineering. Tissue Engineering, 2006, 12, 2117-2129.	4.6	203
8	Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge within vitro generated clinically relevant UHMWPE particles of known size and dose. Journal of Biomedical Materials Research Part B, 2000, 52, 296-307.	3.1	185
9	PRESIDENTIAL GUEST LECTURE: Tribology of Alternative Bearings. Clinical Orthopaedics and Related Research, 2006, 453, 25-34.	1.5	183
10	Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials, 2007, 28, 1061-1070.	11.4	172
11	High Cup Angle and Microseparation Increase the Wear of Hip Surface Replacements. Clinical Orthopaedics and Related Research, 2009, 467, 2259-2265.	1.5	170
12	Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology (United) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
13	The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles. Biomaterials, 2004, 25, 3511-3522.	11.4	166
14	Biotribology of articular cartilage—A review of the recent advances. Medical Engineering and Physics, 2008, 30, 1349-1363.	1.7	164
15	Wear, Debris, and Biologic Activity of Cross-linked Polyethylene in the Knee. Clinical Orthopaedics and Related Research, 2004, 428, 114-119.	1.5	159
16	Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. Journal of Heart Valve Disease, 2002, 11, 457-62.	0.5	158
17	Development and Characterization of an Acellular Porcine Medial Meniscus for Use in Tissue Engineering. Tissue Engineering - Part A, 2008, 14, 505-518.	3.1	149

18Development and Characterization of an Acellular Human Pericardial Matrix for Tissue Engineering.4.613518Tissue Engineering, 2006, 12, 763-773.4.6135

EILEEN INGHAM

#	Article	IF	CITATIONS
19	Long-term wear of ceramic matrix composite materials for hip prostheses under severe swing phase microseparation. Journal of Biomedical Materials Research Part B, 2003, 66B, 567-573.	3.1	118
20	Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 99A, 283-294.	4.0	118
21	The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials, 2006, 27, 4581-4590.	11.4	117
22	Biocompatibility and Potential of Acellular Human Amniotic Membrane to Support the Attachment and Proliferation of Allogeneic Cells. Tissue Engineering - Part A, 2008, 14, 463-472.	3.1	113
23	Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine, 2013, 8, 823-847.	3.3	110
24	Tribology and Wear of Metal-on-Metal Hip Prostheses: Influence of Cup Angle and Head Position. Journal of Bone and Joint Surgery - Series A, 2008, 90, 111-117.	3.0	104
25	Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. Journal of Heart Valve Disease, 2002, 11, 463-71.	0.5	102
26	Effect of ionic strength on the self-assembly, morphology and gelation of pH responsive β-sheet tape-forming peptides. Tetrahedron, 2007, 63, 7457-7467.	1.9	100
27	Production of TNF- \hat{I}_{\pm} and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials, 2000, 21, 1005-1013.	11.4	96
28	The Use of Ultrasonication to Aid Recellularization of Acellular Natural Tissue Scaffolds for Use in Anterior Cruciate Ligament Reconstruction. Tissue Engineering, 2007, 13, 1561-1572.	4.6	96
29	Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials, 2010, 31, 9395-9405.	11.4	96
30	Characterisation of wear particles produced by metal on metal and ceramic on metal hip prostheses under standard and microseparation simulation. Journal of Materials Science: Materials in Medicine, 2007, 18, 819-827.	3.6	94
31	Review: Tissue Engineering of the Urinary Bladder: Considering Structure-Function Relationships and the Role of Mechanotransduction. Tissue Engineering, 2006, 12, 635-644.	4.6	86
32	Comparison of the response of primary human peripheral blood mononuclear phagocytes from different donors to challenge with model polyethylene particles of known size and dose. Biomaterials, 2000, 21, 2033-2044.	11.4	85
33	THE 2007 OTTO AUFRANC AWARD: Ceramic-on-Metal Hip Arthroplasties. Clinical Orthopaedics and Related Research, 2007, 465, 23-32.	1.5	83
34	Biocompatibility of Acellular Human Pericardium. Journal of Surgical Research, 2007, 143, 407-414.	1.6	81
35	The hyaluronate lyase of Staphylococcus aureus – a virulence factor?. Microbiology (United) Tj ETQq1 1 0.784	314 rgBT	Overlock 10
	Regional biomechanical and histological characterisation of the passive porcine urinary bladder		

Regional biomechanical and histological characterisation of the passive porcine urinary bladder: Implications for augmentation and tissue engineering strategies. Biomaterials, 2009, 30, 266-275.

11.4 78

#	Article	IF	CITATIONS
37	Wear of crosslinked polyethylene under different tribological conditions. Journal of Materials Science: Materials in Medicine, 2006, 17, 235-243.	3.6	77
38	Effect of bearing size on the longâ€term wear, wear debris, and ion levels of large diameter metalâ€onâ€metal hip replacements—An <i>in vitro</i> study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 163-172.	3.4	77
39	Investigation of the Regenerative Capacity of an Acellular Porcine Medial Meniscus for Tissue Engineering Applications. Tissue Engineering - Part A, 2011, 17, 231-242.	3.1	74
40	Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. Biomaterials, 2013, 34, 3559-3570.	11.4	72
41	Self-assembling peptides as injectable lubricants for osteoarthritis. Journal of Biomedical Materials Research - Part A, 2006, 78A, 236-246.	4.0	65
42	The genotoxicity of physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): An in vitro study. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 688, 53-61.	1.0	65
43	2009 Knee Society Presidential Guest Lecture: Polyethylene Wear in Total Knees. Clinical Orthopaedics and Related Research, 2010, 468, 12-18.	1.5	64
44	Quantitative characterization of polyethylene debris isolated from periprosthetic tissue in early failure knee implants and early and late failure Charnley hip implants. Journal of Biomedical Materials Research Part B, 2001, 58, 415-420.	3.1	61
45	<i>In vitro</i> modulation of human keratinocyte pro- and anti-inflammatory cytokine production by the capsule of <i>Malassezia</i> species. FEMS Immunology and Medical Microbiology, 2008, 54, 203-214.	2.7	61
46	Effect of swing phase load on metal-on-metal hip lubrication, friction and wear. Journal of Biomechanics, 2006, 39, 2274-2281.	2.1	59
47	The biological response to nanometre-sized polymer particles. Acta Biomaterialia, 2015, 23, 38-51.	8.3	59
48	Microbial colonization of an <i>in vitro</i> model of a tissue engineered human skin equivalent – a novel approach. FEMS Microbiology Letters, 2008, 279, 110-115.	1.8	58
49	Comparison of wear in a total knee replacement under different kinematic conditions. Journal of Materials Science: Materials in Medicine, 2001, 12, 1039-1042.	3.6	56
50	Assay validation for the assessment of adipogenesis of multipotential stromal cells—a direct comparison of four different methods. Cytotherapy, 2013, 15, 89-101.	0.7	52
51	Role of the hprT–ftsH locus in Staphylococcus aureus. Microbiology (United Kingdom), 2004, 150, 373-381.	1.8	51
52	Metal-on-metal bearing wear with different swing phase loads. Journal of Biomedical Materials Research Part B, 2004, 70B, 233-239.	3.1	51
53	Biological effects of cobalt-chromium nanoparticles and ions on dural fibroblasts and dural epithelial cells. Biomaterials, 2013, 34, 3547-3558.	11.4	51
54	Nanometre size wear debris generated from crosslinked and non-crosslinked ultra high molecular weight polyethylene in artificial joints. Wear, 2005, 259, 977-983.	3.1	50

#	Article	IF	CITATIONS
55	Development of Methods for Studying the Differentiation of Human Mesenchymal Stem Cells Under Cyclic Compressive Strain. Tissue Engineering - Part C: Methods, 2012, 18, 252-262.	2.1	49
56	Rational Molecular Design of Complementary Selfâ€Assembling Peptide Hydrogels. Advanced Healthcare Materials, 2012, 1, 640-645.	7.6	47
57	Biphasic surface amorphous layer lubrication of articular cartilage. Medical Engineering and Physics, 2005, 27, 836-844.	1.7	45
58	Development and Characterization of Acellular Allogeneic Arterial Matrices. Tissue Engineering - Part A, 2012, 18, 471-483.	3.1	45
59	The Use of Antithrombotic Therapies in Reducing Synthetic Small-Diameter Vascular Graft Thrombosis. Vascular and Endovascular Surgery, 2012, 46, 212-222.	0.7	42
60	Regenerative Potential of Low-Concentration SDS-Decellularized Porcine Aortic Valved Conduits <i>In Vivo</i> . Tissue Engineering - Part A, 2015, 21, 332-342.	3.1	42
61	Tissue engineering of cardiac valves: re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. Journal of Heart Valve Disease, 2005, 14, 806-13.	0.5	42
62	Assessment of a microplate method for determining the post-antibiotic effect in Staphylococcus aureus and Escherichia coli. Journal of Antimicrobial Chemotherapy, 2004, 54, 139-143.	3.0	41
63	Tissue Engineering Small-Diameter Vascular Grafts: Preparation of a Biocompatible Porcine Ureteric Scaffold. Tissue Engineering - Part A, 2008, 14, 1871-1882.	3.1	41
64	Decellularization and Characterization of Porcine Superflexor Tendon: A Potential Anterior Cruciate Ligament Replacement. Tissue Engineering - Part A, 2017, 23, 124-134.	3.1	41
65	In-vitro assessment of the functional performance of the decellularized intact porcine aortic root. Journal of Heart Valve Disease, 2005, 14, 408-21; discussion 422.	0.5	41
66	Current strategies in meniscal regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 619-634.	3.4	40
67	Surface engineering: A low wearing solution for metalâ€onâ€metal hip surface replacements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 558-565.	3.4	39
68	Comparison of human and animal femoral head chondral properties and geometries. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012, 226, 55-62.	1.8	39
69	Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 2963-2974.	3.1	38
70	Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair. Journal of Materials Science: Materials in Medicine, 2015, 26, 186.	3.6	37
71	Comparative wear under different conditions of surface-engineered metal-on-metal bearings for total hip arthroplasty. Journal of Arthroplasty, 2004, 19, 112-117.	3.1	35
72	Consequences of exposure to peri-articular injections of micro- and nano-particulate cobalt–chromium alloy. Biomaterials, 2013, 34, 8564-8580.	11.4	34

#	Article	IF	CITATIONS
73	Development of a decellularised dermis. Cell and Tissue Banking, 2013, 14, 465-474.	1.1	33
74	Decellularization of human donor aortic and pulmonary valved conduits using low concentration sodium dodecyl sulfate. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e841-e853.	2.7	33
75	Comparison of the response of human peripheral blood mononuclear cells to challenge with particles of three bone cements in vitro. Biomaterials, 2003, 24, 737-748.	11.4	31
76	Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. Journal of Heart Valve Disease, 2005, 14, 228-36; discussion 236-7.	0.5	30
77	Thirteen years' experience with the Ross Operation. Journal of Heart Valve Disease, 2009, 18, 84-94.	0.5	30
78	Heat shock proteins and inflammatory acne vulgaris: molecular cloning, overexpression and purification of aPropionibacterium acnesGroEL and DnaK homologue. FEMS Microbiology Letters, 2000, 191, 183-186.	1.8	29
79	Mechanisms of the post-antibiotic effects induced by rifampicin and gentamicin in Escherichia coli. Journal of Antimicrobial Chemotherapy, 2006, 58, 444-448.	3.0	28
80	Fluid load support and contact mechanics of hemiarthroplasty in the natural hip joint. Medical Engineering and Physics, 2011, 33, 96-105.	1.7	28
81	Wear-simulation analysis of rotating-platform mobile-bearing knees. Orthopedics, 2006, 29, S36-41.	1.1	28
82	Comparison of wear of ultra high molecular weight polyethylene acetabular cups against alumina ceramic and chromium nitride coated femoral heads. Wear, 2005, 259, 972-976.	3.1	27
83	The Human Tissue–Biomaterial Interface: A Role for PPARγ-Dependent Glucocorticoid Receptor Activation in Regulating the CD163+ M2 Macrophage Phenotype. Tissue Engineering - Part A, 2014, 20, 2390-2401.	3.1	27
84	Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. Journal of Tissue Engineering, 2014, 5, 204173141453425.	5.5	27
85	The effects of irradiation on the biological and biomechanical properties of an acellular porcine superflexor tendon graft for cruciate ligament repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2477-2486.	3.4	26
86	Modeling Tissue Growth Within Nonwoven Scaffolds Pores. Tissue Engineering - Part C: Methods, 2011, 17, 123-130.	2.1	25
87	Delayed Development of Linezolid Resistance in <i>Staphylococcus aureus</i> following Exposure to Low Levels of Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 2008, 52, 1940-1944.	3.2	24
88	De novo designed positively charged tape-forming peptides: self-assembly and gelation in physiological solutions and their evaluation as 3D matrices for cell growth. Soft Matter, 2011, 7, 8085.	2.7	24
89	Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator. Journal of Biomechanics, 2015, 48, 3004-3011.	2.1	23
90	Long-Term Clinical, Radiological and Histopathological Follow-Up of a Well-Fixed McKee-Farrar Metal-on-Metal Total Hip Arthroplasty. Journal of Arthroplasty, 2005, 20, 542-546.	3.1	21

#	Article	IF	CITATIONS
91	(iv) Enhancing the safety and reliability of joint replacement implants. Orthopaedics and Trauma, 2012, 26, 246-252.	0.4	19
92	A biomechanical characterisation of acellular porcine super flexor tendons for use in anterior cruciate ligament replacement: Investigation into the effects of fat reduction and bioburden reduction bioprocesses. Journal of Biomechanics, 2015, 48, 22-29.	2.1	19
93	Cytocompatibility of poly(1,2 propandiol methacrylate) copolymer hydrogels and conetworks with or without alkyl amine functionality. Biomaterials, 2009, 30, 2468-2478.	11.4	18
94	The Effect of Anterior-Posterior Shear on the Wear of CHARITÉ Total Disc Replacement. Spine, 2012, 37, E528-E534.	2.0	17
95	Wavelength dependent responses of primary human keratinocytes to combined treatment with benzo[a]pyrene and UV light. Mutagenesis, 2005, 20, 305-310.	2.6	16
96	Hemiarthroplasty of hip joint: An experimental validation using porcine acetabulum. Journal of Biomechanics, 2011, 44, 1536-1542.	2.1	16
97	Bi-linear mechanical property determination of acellular human patellar tendon grafts for use in anterior cruciate ligament replacement. Journal of Biomechanics, 2016, 49, 1607-1612.	2.1	15
98	Decellularisation affects the strain rate dependent and dynamic mechanical properties of a xenogeneic tendon intended for anterior cruciate ligament replacement. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 18-23.	3.1	15
99	Decellularized Intervertebral Discs: A Potential Replacement for Degenerate Human Discs. Tissue Engineering - Part C: Methods, 2020, 26, 565-576.	2.1	14
100	Factors Influencing the Oxygen Consumption Rate of Aortic Valve Interstitial Cells: Application to Tissue Engineering - Part C: Methods, 2009, 15, 355-363.	2.1	12
101	Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications. Journal of Heart Valve Disease, 2008, 17, 700-9.	0.5	12
102	Interaction of micron and nanoâ€sized particles with cells of the dura mater. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1496-1505.	3.4	11
103	Development and characterisation of a low-concentration sodium dodecyl sulphate decellularised porcine dermis. Journal of Tissue Engineering, 2017, 8, 204173141772401.	5.5	11
104	Simple geometry tribological study of osteochondral graft implantation in the knee. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 249-256.	1.8	11
105	Augmentation of the insufficient tissue bed for surgical repair of hypospadias using acellular matrix grafts: A proof of concept study. Journal of Tissue Engineering, 2021, 12, 204173142199884.	5.5	11
106	The osteolytic response of macrophages to challenge with particles of Simplex P, Endurance, Palacos R, and Vertebroplastic bone cement particlesin vitro. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 210-220.	3.4	10
107	Investigation of the antiadhesive properties of human mesothelial cells cultured <i>in vitro</i> on implantable surgical materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 49-60.	3.4	10
108	Biological Effects of Clinically Relevant CoCr Nanoparticles in the Dura Mater: An Organ Culture Study. Nanomaterials, 2014, 4, 485-504.	4.1	10

#	Article	IF	CITATIONS
109	Deletion of the Multiple-Drug Efflux Pump AcrAB in Escherichia coli Prolongs the Postantibiotic Effect. Antimicrobial Agents and Chemotherapy, 2005, 49, 1206-1208.	3.2	9
110	Wear of surface-engineered metal-on-metal bearings for hip prostheses under adverse conditions with the head loading on the rim of the cup. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2013, 227, 345-349.	1.8	9
111	Biomechanical assessment of the stability of osteochondral grafts implanted in porcine and bovine femoral condyles. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 163-170.	1.8	9
112	(ν) Simulation and measurement of wear in metal-on-metal bearings inÂvitro- understanding the reasons for increased wear. Orthopaedics and Trauma, 2012, 26, 253-258.	0.4	8
113	In Vitro Measurement of Wear in Joint Replacements: A Stratified Approach for Enhanced Reliability "SAFER―Pre-Clinical Simulation Testing. Seminars in Arthroplasty, 2012, 23, 286-288.	0.7	8
114	Integration and functional performance of a decellularised porcine superflexor tendon graft in an ovine model of anterior cruciate ligament reconstruction. Biomaterials, 2021, 279, 121204.	11.4	8
115	Regional biomechanical and histological characterization of the mitral valve apparatus: Implications for mitral repair strategies. Journal of Biomechanics, 2016, 49, 2491-2501.	2.1	7
116	The effects of irradiation dose and storage time following treatment on the viscoelastic properties of decellularised porcine super flexor tendon. Journal of Biomechanics, 2017, 57, 157-160.	2.1	7
117	Stratifying the mechanical performance of a decellularized xenogeneic tendon graft for anterior cruciate ligament reconstruction as a function of graft diameter. Bone and Joint Research, 2019, 8, 518-525.	3.6	7
118	The Staphylococcus aureus Alternative Sigma Factor Ï,B Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model. Journal of Bacteriology, 1998, 180, 6082-6089.	2.2	6
119	Development of a specimen-specific in vitro pre-clinical simulation model of the human cadaveric knee with appropriate soft tissue constraints. PLoS ONE, 2020, 15, e0238785.	2.5	6
120	Technique for internal channelling of hydroentangled nonwoven scaffolds to enhance cell penetration. Journal of Biomaterials Applications, 2013, 28, 241-249.	2.4	5
121	A Nondestructive Method to Distinguish the Internal Constituent Architecture of the Intervertebral Discs Using 9.4 Tesla Magnetic Resonance Imaging. Spine, 2015, 40, E1315-E1322.	2.0	5
122	Investigation of the Suitability of Decellularised Porcine Pericardium for Mitral Valve Reconstruction. , 2012, , .		5
123	Development of a pre-clinical experimental simulation model of the natural porcine knee with appropriate ligamentous constraints. PLoS ONE, 2019, 14, e0216872.	2.5	4
124	Decellularised human bone allograft from different anatomical sites as a basis for functionally stratified repair material for bone defects. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104965.	3.1	4
125	Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 418-426.	1.8	3
126	Developing a Tooth in situ Organ Culture Model for Dental and Periodontal Regeneration Research. Frontiers in Bioengineering and Biotechnology, 2020, 8, 581413.	4.1	3

EILEEN INGHAM

#	Article	IF	CITATIONS
127	An experimental simulation model to assess wear of the porcine patellofemoral joint. PLoS ONE, 2021, 16, e0250077.	2.5	3
128	The effect of decellularisation on the real time mechanical fatigue of porcine aortic heart valve roots. PLoS ONE, 2022, 17, e0265763.	2.5	3
129	Tribology of Hip Joints from Natural Hip Joints, Cartilage Substitution, Artificial Replacements to Cartilage Tissue Engineering. Journal of Biomechanical Science and Engineering, 2006, 1, 69-81.	0.3	2
130	Characterization of UHMWPE Wear Particles. , 2009, , 409-422.		1
131	Orthogonal Invariant Sets of the Diffusion Tensor and the Development of a Curvilinear Set Suitable for Low-Anisotropy Tissues. PLoS ONE, 2013, 8, e78798.	2.5	1
132	Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. , 2000, 53, 490.		1
133	Quantitative characterization of polyethylene debris isolated from periprosthetic tissue in early failure knee implants and early and late failure Charnley hip implants. Journal of Biomedical Materials Research Part B, 2001, 58, 415-420.	3.1	1
134	Heat shock proteins and inflammatory acne vulgaris: molecular cloning, overexpression and purification of a Propionibacterium acnes GroEL and DnaK homologue. FEMS Microbiology Letters, 2000, 191, 183-186.	1.8	1
135	Translation of mechanical strain to a scalable biomanufacturing process for acellular matrix production from full thickness porcine bladders. Biomedical Materials (Bristol), 2021, 16, 065023.	3.3	1
136	Repopulation of decellularised porcine pulmonary valves in the right ventricular outflow tract of sheep: Role of macrophages. Journal of Tissue Engineering, 2022, 13, 204173142211026.	5.5	1
137	The Effect of Different Lubrication Regimes and Lubricants on the Friction Hard-on-Hard Total Hip Replacements. , 2005, , 625.		0
138	Peptideâ€Based Biomaterials: Rational Molecular Design of Complementary Selfâ€Assembling Peptide Hydrogels (Adv. Healthcare Mater. 5/2012). Advanced Healthcare Materials, 2012, 1, 679-679.	7.6	0
139	Development and Characterisation of a Decellularised Porcine Dermis for Chronic Non-Healing Wounds. European Journal of Vascular and Endovascular Surgery, 2019, 58, e156.	1.5	0
140	TRIBOLOGY OF METAL-ON-METAL ARTIFICIAL HIP JOINTS. , 2009, , 279-307.		0