Andrés Honrubia Escribano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064407/publications.pdf Version: 2024-02-01

		567144	477173
32	1,023 citations	15	29
papers	citations	h-index	g-index
32	32	32	1049
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Industry 4.0 enabling sustainable supply chain development in the renewable energy sector: A multi-criteria intelligent approach. Technological Forecasting and Social Change, 2022, 182, 121813.	6.2	29
2	Learning Load Flow Analysis in Electric Power Systems: A Case Study in PowerFactory. , 2022, , .		1
3	Evaluation of the latest Spanish grid code requirements from a PV power plant perspective. Energy Reports, 2022, 8, 8589-8604.	2.5	5
4	Short-Circuit Current Contribution of Doubly-Fed Wind Turbines According to IEC and IEEE Standards. IEEE Transactions on Power Delivery, 2021, 36, 2904-2912.	2.9	8
5	Failure rate and downtime survey of wind turbines located in Spain. IET Renewable Power Generation, 2021, 15, 225-236.	1.7	7
6	Wind Resource and Wind Power Generation Assessment for Education in Engineering. Sustainability, 2021, 13, 2444.	1.6	11
7	Fault Evolution Monitoring of an In-Service Wind Turbine DFIG Using Windowed Scalogram Difference. IEEE Access, 2021, 9, 90118-90125.	2.6	3
8	In-Service Wind Turbine DFIG Diagnosis Using Current Signature Analysis. IEEE Transactions on Industrial Electronics, 2020, 67, 2262-2271.	5.2	27
9	Requirements for Validation of Dynamic Wind Turbine Models: An International Grid Code Review. Electronics (Switzerland), 2020, 9, 1707.	1.8	7
10	Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review. Energies, 2020, 13, 3132.	1.6	68
11	An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. Expert Systems With Applications, 2020, 150, 113321.	4.4	128
12	Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches. Energies, 2019, 12, 2690.	1.6	8
13	Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers. Energies, 2019, 12, 3039.	1.6	6
14	Generic Type 3 WT models: comparison between IEC and WECC approaches. IET Renewable Power Generation, 2019, 13, 1168-1178.	1.7	14
15	Compliance of a Generic Type 3 WT Model with the Spanish Grid Code. Energies, 2019, 12, 1631.	1.6	13
16	Vertical Wind Profile Characterization and Identification of Patterns Based on a Shape Clustering Algorithm. IEEE Access, 2019, 7, 30890-30904.	2.6	12
17	Long-Term Operational Data Analysis of an In-Service Wind Turbine DFIG. IEEE Access, 2019, 7, 17896-17906.	2.6	9
18	Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3. Energies, 2019, 12, 3749.	1.6	12

#	Article	IF	CITATIONS
19	Field Validation of Generic Type 4 Wind Turbine Models Based on IEC and WECC Guidelines. IEEE Transactions on Energy Conversion, 2019, 34, 933-941.	3.7	16
20	Influence of solar technology in the economic performance of PV power plants in Europe. A comprehensive analysis. Renewable and Sustainable Energy Reviews, 2018, 82, 488-501.	8.2	92
21	Current signature analysis to monitor DFIG wind turbine generators: A case study. Renewable Energy, 2018, 116, 5-14.	4.3	41
22	Field Validation of a Standard Type 3 Wind Turbine Model for Power System Stability, According to the Requirements Imposed by IEC 61400-27-1. IEEE Transactions on Energy Conversion, 2018, 33, 137-145.	3.7	29
23	Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train. Energies, 2018, 11, 960.	1.6	36
24	Wind turbine reliability: A comprehensive review towards effective condition monitoring development. Applied Energy, 2018, 228, 1569-1583.	5.1	156
25	Contribution of wind energy to balancing markets: The case of Spain. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e300.	1.9	8
26	Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: Comparative economic assessment and policy implications for European countries. Energy Policy, 2017, 102, 440-452.	4.2	105
27	Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips. Energies, 2017, 10, 1441.	1.6	19
28	Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27. Energies, 2016, 9, 1048.	1.6	15
29	Power quality surveys of photovoltaic power plants: characterisation and analysis of grid ode requirements. IET Renewable Power Generation, 2015, 9, 466-473.	1.7	57
30	Influence of voltage dips on industrial equipment: Analysis and assessment. International Journal of Electrical Power and Energy Systems, 2012, 41, 87-95.	3.3	74
31	SISTEMAS DE EVALUACIÓN DEL RECURSO EÓLICO: INTEGRACIÓN DE NUEVAS SOLUCIONES BASADAS EN TECNOLOGÃA LÃSER. Dyna (Spain), 2012, 87, 540-548.	0.1	0
32	Advanced teaching method for learning power system operation based on load flow simulations. Computer Applications in Engineering Education, 0, , .	2.2	7