
Meicheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alloy-buffer-controlled van der Waals epitaxial growth of aligned tellurene. Nano Research, 2022, 15, 5712-5718.	5.8	4
2	Bandgap Engineering of Ternary εâ€InSe _{1â^'} <i>_x</i> S <i>_x</i> εâ€InSe _{1â^'} <i>_y</i> Te <i>_y</i> Single Crystals for Highâ€Performance Electronics and Optoelectronics. Advanced Optical Materials, 2022, 10, .	3.6	3
3	Twoâ€Dimensional Tellurene Transistors with Low Contact Resistance and Selfâ€Aligned Catalytic Thinning Process. Advanced Electronic Materials, 2022, 8, .	2.6	5
4	Topological phase change transistors based on tellurium Weyl semiconductor. Science Advances, 2022, 8, .	4.7	17
5	Crypto primitive of MOCVD MoS2 transistors for highly secured physical unclonable functions. Nano Research, 2021, 14, 1784-1788.	5.8	19
6	Metal Substitution Steering Electron Correlations in Pyrochlore Ruthenates for Efficient Acidic Water Oxidation. ACS Nano, 2021, 15, 8537-8548.	7.3	54
7	Fieldâ€Effect Chiral Anomaly Devices with Dirac Semimetal. Advanced Functional Materials, 2021, 31, 2104192.	7.8	13
8	Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells. Renewable and Sustainable Energy Reviews, 2021, 152, 111689.	8.2	12
9	Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Science Advances, 2021, 7, eabf8744.	4.7	37
10	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	11.1	427
11	Anisotropic Signal Processing with Trigonal Selenium Nanosheet Synaptic Transistors. ACS Nano, 2020, 14, 10018-10026.	7.3	43
12	Surface-Modified Ultrathin InSe Nanosheets with Enhanced Stability and Photoluminescence for High-Performance Optoelectronics. ACS Nano, 2020, 14, 11373-11382.	7.3	34
13	Quest for Lead-Free Perovskite-Based Solar Cells. , 2020, , .		0
14	Optoelectronic resistive random access memory for neuromorphic vision sensors. Nature Nanotechnology, 2019, 14, 776-782.	15.6	783
15	Interstitial copperâ€doped edge contact for nâ€type carrier transport in black phosphorus. InformaÄnÃ- Materiály, 2019, 1, 242-250.	8.5	18
16	2D Materials Based Optoelectronic Memory: Convergence of Electronic Memory and Optical Sensor. Research, 2019, 2019, 9490413.	2.8	85
17	Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique. ACS Nano, 2018, 12, 1491-1499.	7.3	159
18	Copper-Substituted Lead Perovskite Materials Constructed with Different Halides for Working (CH ₃ NH ₃) ₂ CuX ₄ -Based Perovskite Solar Cells from Experimental and Theoretical View. ACS Applied Materials & Interfaces, 2018, 10, 11699-11707.	4.0	171

Meicheng Li

#	Article	IF	CITATIONS
19	Superior Stability and Efficiency Over 20% Perovskite Solar Cells Achieved by a Novel Molecularly Engineered Rutin–AgNPs/Thiophene Copolymer. Advanced Science, 2018, 5, 1800568.	5.6	48
20	Computational Study of Ternary Devices: Stable, Low-Cost, and Efficient Planar Perovskite Solar Cells. Nano-Micro Letters, 2018, 10, 51.	14.4	53
21	Self â€Powered Insole Plantar Pressure Mapping System. Advanced Functional Materials, 2018, 28, 1801606.	7.8	104
22	Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408-424.	8.2	145
23	Improved interfacial H ₂ O supply by surface hydroxyl groups for enhanced alkaline hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 24091-24097.	5.2	47
24	Optimal design of efficient hole transporting layer free planar perovskite solar cell. Science China Materials, 2016, 59, 703-709.	3.5	39
25	Pathways Towards High-Stable, Low-Cost and Efficient Perovskite Solar Cells. , 0, , .		3