
Michael Selzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Equilibrium droplet shapes on chemically patterned surfaces: theoretical calculation, phase-field simulation, and experiments. Journal of Colloid and Interface Science, 2022, 606, 1077-1086.	9.4	18
2	Managing FAIR Tribological Data Using Kadi4Mat. Data, 2022, 7, 15.	2.3	3
3	Machine Learning Assisted Design of Experiments for Solid State Electrolyte Lithium Aluminum Titanium Phosphate. Frontiers in Materials, 2022, 9, .	2.4	5
4	Explainable Artificial Intelligence for Mechanics: Physics-Explaining Neural Networks for Constitutive Models. Frontiers in Materials, 2022, 8, .	2.4	13
5	A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures. Metals, 2022, 12, 376.	2.3	2
6	Generating FAIR research data in experimental tribology. Scientific Data, 2022, 9, .	5.3	7
7	Wicking in Porous Polymeric Membranes: Determination of an Effective Capillary Radius to Predict the Flow Behavior in Lateral Flow Assays. Membranes, 2022, 12, 638.	3.0	4
8	Geometric flow control in lateral flow assays: Macroscopic single-phase modeling. Physics of Fluids, 2022, 34, .	4.0	3
9	A two-dimensional phase-field study on dendritic growth competition under convective conditions. Computational Materials Science, 2021, 186, 109964.	3.0	13
10	Phase-field simulations of grain boundary grooving under diffusive-convective conditions. Acta Materialia, 2021, 204, 116497.	7.9	13
11	Kadi4Mat: A Research Data Infrastructure for Materials Science. Data Science Journal, 2021, 20, .	1.3	36
12	Wide-blocky veins explained by dependency of crystal growth rate on fracture surface type: Insights from phase-field modeling. Geology, 2021, 49, 641-646.	4.4	19
13	Quantitative Phase-Field Modeling of Faceted Crystal Dissolution Processes. Crystal Growth and Design, 2021, 21, 3266-3279.	3.0	12
14	Kinematics of Crystal Growth in Singleâ€5eal Syntaxial Veins in Limestone ―A Phaseâ€Field Study. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022106.	3.4	7
15	Formation of wide-blocky calcite veins by extreme growth competition. Journal of the Geological Society, 2021, 178, .	2.1	9
16	Computational Determination of Macroscopic Mechanical and Thermal Material Properties for Different Morphological Variants of Cast Iron. Metals, 2021, 11, 1588.	2.3	1
17	Workflow concepts to model nonlinear mechanics with computational intelligence. Proceedings in Applied Mathematics and Mechanics, 2021, 21, .	0.2	2
18	A Stochastic Study of Flow Anisotropy and Channelling in Open Rough Fractures. Rock Mechanics and Rock Engineering, 2020, 53, 233-249.	5.4	11

MICHAEL SELZER

#	Article	IF	CITATIONS
19	Microstructural transition in monotectic alloys: A phase-field study. International Journal of Heat and Mass Transfer, 2020, 159, 120096.	4.8	2
20	How do chemical patterns affect equilibrium droplet shapes?. Soft Matter, 2020, 16, 6115-6127.	2.7	18
21	Multiphase-field modelling of concurrent grain growth and coarsening in complex multicomponent systems. Journal of Materials Science and Technology, 2020, 45, 215-229.	10.7	14
22	Quartz Cementation in Polycrystalline Sandstone: Insights From Phaseâ€Field Simulations. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019137.	3.4	18
23	Quadrijunctions-stunted grain growth in duplex microstructure: A multiphase-field analysis. Scripta Materialia, 2020, 182, 16-20.	5.2	8
24	Morphological stability of rod-shaped continuous phases. Acta Materialia, 2020, 192, 20-29.	7.9	2
25	Influence of melt convection on the morphological evolution of seaweed structures: Insights from phase-field simulations. Computational Materials Science, 2019, 170, 109196.	3.0	5
26	Droplets on chemically patterned surface: A local free-energy minima analysis. Physical Review E, 2019, 100, 041102.	2.1	15
27	Investigation of Equilibrium Droplet Shapes on Chemically Striped Patterned Surfaces Using Phase-Field Method. Langmuir, 2019, 35, 8500-8516.	3.5	16
28	Progress Report on Phase Separation in Polymer Solutions. Advanced Materials, 2019, 31, e1806733.	21.0	83
29	Phase-Field Study of Electromigration-Induced Shape Evolution of a Transgranular Finger-Like Slit. Journal of Electronic Materials, 2019, 48, 182-193.	2.2	12
30	Electromigration-Induced Surface Drift and Slit Propagation in Polycrystalline Interconnects: Insights from Phase-Field Simulations. Physical Review Applied, 2018, 9, .	3.8	18
31	Modeling fracture cementation processes in calcite limestone: a phase-field study. Geothermal Energy, 2018, 6, .	1.9	19
32	Threeâ€Dimensional Phaseâ€Field Investigation of Pore Space Cementation and Permeability in Quartz Sandstone. Journal of Geophysical Research: Solid Earth, 2018, 123, 6378-6396.	3.4	17
33	Computational modeling of calcite cementation in saline limestone aquifers: a phase-field study. Geothermal Energy, 2017, 5, .	1.9	13
34	Electric-field-induced lamellar to hexagonally perforated lamellar transition in diblock copolymer thin films: kinetic pathways. Physical Chemistry Chemical Physics, 2016, 18, 25609-25620.	2.8	11
35	Calibration of a multi-phase field model with quantitative angle measurement. Journal of Materials Science, 2016, 51, 1788-1797.	3.7	52
36	Underdamped capillary wave caused by solutal Marangoni convection in immiscible liquids. Journal of Materials Science, 2016, 51, 1820-1828.	3.7	0

MICHAEL SELZER

#	Article	IF	CITATIONS
37	Numerical study on solutal Marangoni instability in finite systems with a miscibility gap. Physics of Fluids, 2014, 26, 124102.	4.0	5
38	10.1063/1.4902355.2., 2014, , .		0
39	Phase-field study of grain boundary tracking behavior in crack-seal microstructures. Contributions To Mineralogy and Petrology, 2013, 166, 1709-1723.	3.1	38
40	A Latticeâ€Boltzmann model to simulate the growth of dendritic and eutectic microstructures under the influence of fluid flow. Physica Status Solidi (B): Basic Research, 2009, 246, 1197-1205.	1.5	19
41	3D Simulation Environment for Haptic Sensor and Actor Components in the Cockpit. ATZ Worldwide, 2009, 111, 40-45.	0.1	0