
Thierry Thomas-Danguin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
2	The perception of odor objects in everyday life: a review on the processing of odor mixtures. Frontiers in Psychology, 2014, 5, 504.	2.1	163
3	Odour–taste interactions: A way to enhance saltiness in low-salt content solutions. Food Quality and Preference, 2009, 20, 241-248.	4.6	153
4	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
5	Cross-modal interactions between taste and smell: Odour-induced saltiness enhancement depends on salt level. Food Quality and Preference, 2011, 22, 678-682.	4.6	95
6	Perceptual Interactions in Odour Mixtures: Odour Quality in Binary Mixtures of Woody and Fruity Wine Odorants. Chemical Senses, 2005, 30, 209-217.	2.0	75
7	Perceptual Processing Strategy and Exposure Influence the Perception of Odor Mixtures. Chemical Senses, 2007, 33, 193-199.	2.0	75
8	Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nature Communications, 2020, 11, 5152.	12.8	74
9	Just Noticeable Differences in Component Concentrations Modify the Odor Quality of a Blending Mixture. Chemical Senses, 2008, 33, 389-395.	2.0	72
10	Using cross-modal interactions to counterbalance salt reduction in solid foods. International Dairy Journal, 2011, 21, 103-110.	3.0	72
11	Modelling the Human Olfactory Stimulus-Response Function. Chemical Senses, 1998, 23, 181-196.	2.0	63
12	Perception of wine fruity and woody notes: influence of peri-threshold odorants. Food Quality and Preference, 2005, 16, 504-510.	4.6	63
13	Relationships Between Molecular Structure and Perceived Odor Quality of Ligands for a Human Olfactory Receptor. Chemical Senses, 2008, 33, 639-653.	2.0	61
14	Perceptual Blending in Odor Mixtures Depends on the Nature of Odorants and Human Olfactory Expertise. Chemical Senses, 2012, 37, 159-166.	2.0	59
15	Perceptual interactions between fruity and woody notes of wine. Flavour and Fragrance Journal, 2004, 19, 476-482.	2.6	58
16	Impact of ethanol on the perception of wine odorant mixtures. Food Quality and Preference, 2007, 18, 901-908.	4.6	58
17	Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures. European Journal of Neuroscience, 2012, 35, 584-597.	2.6	55
18	Selecting odorant compounds to enhance sweet flavor perception by gas chromatography/olfactometry-associated taste (GC/O-AT). Food Chemistry, 2018, 257, 172-181.	8.2	54

#	Article	IF	CITATIONS
19	Reducing salt and fat while maintaining taste: An approach on a model food system. Food Quality and Preference, 2016, 48, 59-69.	4.6	51
20	Cross-modal interactions as a strategy to enhance salty taste and to maintain liking of low-salt food: a review. Food and Function, 2019, 10, 5269-5281.	4.6	50
21	Enhancing salty taste through odour–taste–taste interactions: Influence of odour intensity and salty tastants' nature. Food Quality and Preference, 2013, 28, 134-140.	4.6	47
22	Perception of odor blending mixtures in the newborn rabbit. Physiology and Behavior, 2008, 95, 194-199.	2.1	46
23	Selection of Potential Impact Odorants and Sensory Validation of Their Importance in Typical Chardonnay Wines. Journal of Agricultural and Food Chemistry, 2006, 54, 3973-3981.	5.2	43
24	Heterogeneous salt distribution in hot snacks enhances saltiness without loss of acceptability. Food Research International, 2013, 51, 641-647.	6.2	43
25	A pheromone to behave, a pheromone to learn: the rabbit mammary pheromone. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2010, 196, 779-790.	1.6	41
26	Efficient Production and Characterization of the Sweet-Tasting Brazzein Secreted by the Yeast Pichia pastoris. Journal of Agricultural and Food Chemistry, 2012, 60, 9807-9814.	5.2	40
27	Enhancement of saltiness perception by odorants selected from Chinese soy sauce: A gas chromatography/olfactometry-associated taste study. Food Chemistry, 2021, 335, 127664.	8.2	37
28	Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner. PLoS ONE, 2013, 8, e53534.	2.5	37
29	Investigating semi-hard cheese aroma: Relationship between sensory profiles and gas chromatography-olfactometry data. International Dairy Journal, 2012, 26, 41-49.	3.0	36
30	Comparison of stir bar sorptive extraction in the liquid and vapour phases, solvent-assisted flavour evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT - Food Science and Technology, 2017, 85, 334-344.	5.2	33
31	Synergy and Masking in Odor Mixtures: An Electrophysiological Study of Orthonasal vs. Retronasal Perception. Chemical Senses, 2008, 33, 553-561.	2.0	31
32	Elemental and configural processing of odour mixtures in the newborn rabbit. Journal of Experimental Biology, 2009, 212, 2525-2531.	1.7	30
33	Development of the ETOC: a European test of olfactory capabilities. Rhinology, 2003, 41, 142-51.	1.3	30
34	Proportion of Odorants Impacts the Configural versus Elemental Perception of a Binary Blending Mixture in Newborn Rabbits. Chemical Senses, 2011, 36, 693-700.	2.0	29
35	Experience influences elemental and configural perception of certain binary odour mixtures in newborn rabbits. Journal of Experimental Biology, 2011, 214, 4171-4178.	1.7	28
36	Thought for food: Cognitive influences on chemosensory perceptions and preferences. Food Quality and Preference, 2020, 79, 103776.	4.6	26

#	Article	IF	CITATIONS
37	Multivariate approach to reveal relationships between sensory perception of cheeses and aroma profile obtained with different extraction methods. Food Research International, 2014, 62, 561-571.	6.2	25
38	Odor and color of cosmetic products: correlations between subjective judgement and autonomous nervous system response. International Journal of Cosmetic Science, 2003, 25, 273-283.	2.6	23
39	Learning Influences the Perception of Odor Mixtures. Chemosensory Perception, 2010, 3, 156-166.	1.2	23
40	Neonatal representation of odour objects: distinct memories of the whole and its parts. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133319.	2.6	23
41	Odor-Induced Saltiness Enhancement: Insights Into The Brain Chronometry Of Flavor Perception. Neuroscience, 2021, 452, 126-137.	2.3	23
42	Tap water consumers differ from non-consumers in chlorine flavor acceptability but not sensitivity. Water Research, 2010, 44, 956-964.	11.3	22
43	The Lyon Clinical Olfactory Test: Validation and Measurement of Hyposmia and Anosmia in Healthy and Diseased Populations. International Journal of Otolaryngology, 2011, 2011, 1-9.	0.9	21
44	Key odorants or key associations? Insights into elemental and configural odour processing. Flavour and Fragrance Journal, 2018, 33, 97-105.	2.6	21
45	Multivariate Statistical Analysis and Odor–Taste Network To Reveal Odor–Taste Associations. Journal of Agricultural and Food Chemistry, 2020, 68, 10318-10328.	5.2	21
46	Combined heterogeneous distribution of salt and aroma in food enhances salt perception. Food and Function, 2015, 6, 1449-1459.	4.6	20
47	Mammalian Olfactory Receptors. Progress in Molecular Biology and Translational Science, 2015, 130, 1-36.	1.7	18
48	Evidence of regional differences in chlorine perception by consumers: sensitivity differences or habituation?. Journal of Water Supply: Research and Technology - AQUA, 2015, 64, 783-792.	1.4	17
49	Brain processing of a configural vs elemental odor mixture in the newborn rabbit. Brain Structure and Function, 2016, 221, 2527-2539.	2.3	17
50	Multi-Criteria Reverse Engineering for Food: Genesis and Ongoing Advances. Food Engineering Reviews, 2019, 11, 44-60.	5.9	17
51	Influence du contexte sémantique sur la performance d'identification d'odeurs. Psychologie Francaise, 2005, 50, 225-239.	0.4	15
52	Ham Particle Size Influences Saltiness Perception in Flans. Journal of Food Science, 2014, 79, S693-6.	3.1	15
53	Multimodal interactions. , 2016, , 121-141.		15
54	Use of Sensors to Measure In-Mouth Salt Release During Food Chewing. IEEE Sensors Journal, 2012, 12, 3124-3130.	4.7	14

#	Article	IF	CITATIONS
55	Perceptual interactions among food odors: Major influences on odor intensity evidenced with a set of 222 binary mixtures of key odorants. Food Chemistry, 2021, 353, 129483.	8.2	13
56	Experience shapes our odor perception but depends on the initial perceptual processing of the stimulus. Attention, Perception, and Psychophysics, 2015, 77, 1794-1806.	1.3	12
57	Exemplarity measurement and estimation of the level of interjudge agreement for two categories of French red wines. Food Quality and Preference, 2015, 40, 240-251.	4.6	12
58	Comprehensive sensory and chemical data on the flavor of 16 red wines from two varieties: Sensory descriptive analysis, HS-SPME-GC-MS volatile compounds quantitative analysis, and odor-active compounds identification by HS-SPME-GC-MS-O. Data in Brief, 2019, 24, 103725.	1.0	12
59	Fat perception in cottage cheese: The contribution of aroma and tasting temperature. Food Quality and Preference, 2017, 56, 241-246.	4.6	11
60	Differential memory persistence of odor mixture and components in newborn rabbits: competition between the whole and its parts. Frontiers in Behavioral Neuroscience, 2014, 8, 211.	2.0	10
61	Sensory properties linked to fat content and tasting temperature in cottage cheese. Dairy Science and Technology, 2016, 96, 735-746.	2.2	10
62	Encoding odorant mixtures by human olfactory receptors. Flavour and Fragrance Journal, 2016, 31, 400-407.	2.6	9
63	Salt and Aroma Compound Distributions Influence Flavour Release and Temporal Perception While Eating Hot-Served Flans. Molecules, 2021, 26, 1300.	3.8	9
64	Assessing the contribution of odor-active compounds in icewine considering odor mixture-induced interactions through gas chromatography–olfactometry and Olfactoscan. Food Chemistry, 2022, 388, 132991.	8.2	8
65	Exploring the Characteristics of an Aroma-Blending Mixture by Investigating the Network of Shared Odors and the Molecular Features of Their Related Odorants. Molecules, 2020, 25, 3032.	3.8	7
66	Configural memory of a blending aromatic mixture reflected in activation of the left orbital part of the inferior frontal gyrus. Behavioural Brain Research, 2021, 402, 113088.	2.2	7
67	Relationships between cheese composition, rheological and sensory properties highlighted using the BaGaTel database. International Dairy Journal, 2021, 118, 105039.	3.0	7
68	Configural processing of odor mixture: Does the learning of elements prevent the perception of configuration in the newborn rabbit?. Physiology and Behavior, 2015, 142, 161-169.	2.1	6
69	Developmental changes in elemental and configural perception of odor mixtures in young rabbits. Developmental Psychobiology, 2020, 62, 471-483.	1.6	6
70	Configural perception of a binary olfactory mixture in honey bees as in humans, rodents and newborn rabbits. Journal of Experimental Biology, 2020, 223, .	1.7	6
71	Newborn Rabbit Perception of 6-Odorant Mixtures Depends on Configural Processing and Number of Familiar Elements. PLoS ONE, 2014, 9, e107560.	2.5	6
72	Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process. Journal of Agricultural and Food Chemistry, 2022, 70, 8385-8394.	5.2	6

#	Article	IF	CITATIONS
73	Strategies To Enhance Saltiness in Food Involving Cross Modal Interactions. ACS Symposium Series, 2015, , 27-40.	0.5	5
74	Pleasantness of Binary Odor Mixtures: Rules and Prediction. Chemical Senses, 2020, 45, 303-311.	2.0	5
75	Compilation of data on model cheeses composition, rheological and sensory properties, from six research projects exported from the BaGaTel database. Data in Brief, 2021, 36, 106971.	1.0	5
76	Lipidomic profile of human nasal mucosa and associations with circulating fatty acids and olfactory deficiency. Scientific Reports, 2021, 11, 16771.	3.3	5
77	A dataset on odor intensity and odor pleasantness of 222 binary mixtures of 72 key food odorants rated by a sensory panel of 30 trained assessors. Data in Brief, 2021, 36, 107143.	1.0	4
78	Flavor. , 2009, , 1580-1582.		4
79	Perceptual Interactions in Complex Odor Mixtures. , 2014, , 27-31.		3
80	Combination of odourâ€stimulation tools and surface response methodology for odour recombination studies. Flavour and Fragrance Journal, 2017, 32, 196-206.	2.6	3
81	Biological constraints on configural odour mixture perception. Journal of Experimental Biology, 2022, 225, .	1.7	3
82	Olfactory Capabilities Towards Food and Non-food Odours in Men and Women of Various Weight Statuses. Chemosensory Perception, 2022, 15, 60-69.	1.2	2
83	Functional MRI and Sensory Perception of Food. , 2017, , 1-20.		2
84	In-mouth salt release measurement during food chewing using sensors. , 2011, , .		1
85	Reducing Sodium Content in Cheeses While Increasing Salty Taste and Fat Perception Using Aroma. Frontiers in Nutrition, 0, 9, .	3.7	1
86	Influence of obesity on saltiness and sweetness intensity enhancement by odors. Food Quality and Preference, 2022, 102, 104685.	4.6	1
87	In silico modelling to predict the odor profile of food from its molecular composition using experts' knowledge, fuzzy logic and optimization: Application on wines. , 2017, , .		0
88	Functional MRI and Sensory Perception of Food. , 2018, , 1629-1647.		0