Kyung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7064082/publications.pdf

Version: 2024-02-01

		172207	205818
67	2,681	29	48
papers	citations	h-index	g-index
72	72	72	3276
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Progression of kidney disease as a maladaptive response to injury. , 2022, , 213-220.		O
2	Activation of STAT3 signaling pathway in the kidney of COVID-19 patients. Journal of Nephrology, 2022, 35, 735-743.	0.9	10
3	Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice. Molecular Therapy, 2022, 30, 1741-1753.	3.7	17
4	Modulation of transforming growth factor-β-induced kidney fibrosis by leucine-rich â²-2 glycoprotein-1. Kidney International, 2022, 101, 299-314.	2.6	27
5	Digital Spatial Profiling of Individual Glomeruli From Patients With Anti-Neutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis. Frontiers in Immunology, 2022, 13, 831253.	2.2	9
6	HIPK2 directs cell type–specific regulation of STAT3 transcriptional activity in Th17 cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117112119.	3.3	2
7	Similarities and Differences between COVID-19-Associated Nephropathy and HIV-Associated Nephropathy. Kidney Diseases (Basel, Switzerland), 2022, 8, 1-12.	1.2	6
8	Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney International, 2022, 102, 293-306.	2.6	18
9	Puerarin attenuates diabetic kidney injury through interaction with Guanidine nucleotideâ€binding protein Gi subunit alphaâ€1 (Gnai1) subunit. Journal of Cellular and Molecular Medicine, 2022, 26, 3816-3827.	1.6	10
10	Connectivity Mapping Identifies BI-2536 as a Potential Drug to Treat Diabetic Kidney Disease. Diabetes, 2021, 70, 589-602.	0.3	12
11	Inhibition of apoptosis signal-regulating kinase 1 mitigates the pathogenesis of human immunodeficiency virus-associated nephropathy. Nephrology Dialysis Transplantation, 2021, 36, 430-441.	0.4	5
12	Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney International, 2021, 99, 914-925.	2.6	16
13	Disparate roles of retinoid acid signaling molecules in kidney disease. American Journal of Physiology - Renal Physiology, 2021, 320, F683-F692.	1.3	23
14	Peroxisomal L-bifunctional Protein Deficiency Causes Male-specific Kidney Hypertrophy and Proximal Tubular Injury in Mice. Kidney360, 2021, 2, 1441-1454.	0.9	10
15	A Novel Mechanism of Regulation for Exosome Secretion in the Diabetic Kidney. Diabetes, 2021, 70, 1440-1442.	0.3	4
16	Molecular Analysis of the Kidney From a Patient With COVID-19–Associated Collapsing Glomerulopathy. Kidney Medicine, 2021, 3, 653-658.	1.0	18
17	Global transcriptomic changes in glomerular endothelial cells in mice with podocyte depletion and glomerulosclerosis. Cell Death and Disease, 2021, 12, 687.	2.7	5
18	Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney International, 2021, 100, 67-78.	2.6	20

#	Article	IF	Citations
19	Autocrine and paracrine effects of a novel podocyte gene, RARRES1. Kidney International, 2021, 100, 745-747.	2.6	7
20	Role of CD8+ T cells in crescentic glomerulonephritis. Nephrology Dialysis Transplantation, 2020, 35, 564-572.	0.4	21
21	Role of SIRT1 in HIV-associated kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F335-F344.	1.3	13
22	Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Diseases (Basel, Switzerland), 2020, 6, 215-225.	1.2	98
23	Podocyte and endothelial-specific elimination of BAMBI identifies differential transforming growthÂfactor-Î ² pathways contributing to diabeticÂglomerulopathy. Kidney International, 2020, 98, 601-614.	2.6	14
24	Drug Testing for Residual Progression of Diabetic Kidney Disease in Mice Beyond Therapy with Metformin, Ramipril, and Empagliflozin. Journal of the American Society of Nephrology: JASN, 2020, 31, 1729-1745.	3.0	20
25	Integrin- \hat{l}^2 (sub>1 is required for the renal cystogenesis caused by ciliary defects. American Journal of Physiology - Renal Physiology, 2020, 318, F1306-F1312.	1.3	2
26	Tubular HIPK2 is a key contributor to renal fibrosis. JCI Insight, 2020, 5, .	2.3	14
27	Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. Journal of Clinical Investigation, 2020, 130, 5523-5535.	3.9	37
28	Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 2019, 10, 4523.	5.8	89
29	Comparison of Kidney Transcriptomic Profiles of Early and Advanced Diabetic Nephropathy Reveals Potential New Mechanisms for Disease Progression. Diabetes, 2019, 68, 2301-2314.	0.3	74
30	Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2019, 30, 533-545.	3.0	133
31	LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF-β–Induced Angiogenesis. Journal of the American Society of Nephrology: JASN, 2019, 30, 546-562.	3.0	82
32	Expression of Glutamate Receptor Subtype 3 Is Epigenetically Regulated in Podocytes under Diabetic Conditions. Kidney Diseases (Basel, Switzerland), 2019, 5, 34-42.	1.2	7
33	Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney International, 2018, 93, 1330-1343.	2.6	153
34	Protein S Protects against Podocyte Injury in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2018, 29, 1397-1410.	3.0	34
35	Transcriptomic analysis uncovers novel synergistic mechanisms in combination therapy for lupus nephritis. Kidney International, 2018, 93, 416-429.	2.6	26
36	Role of Krüppelâ€like factorâ€2 in kidney disease. Nephrology, 2018, 23, 53-56.	0.7	15

#	Article	IF	CITATIONS
37	SIRT1 Is a Potential Drug Target for Treatment of Diabetic Kidney Disease. Frontiers in Endocrinology, 2018, 9, 624.	1.5	63
38	Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury. Kidney International, 2018, 94, 1160-1176.	2.6	23
39	Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy ofÂdiabetic mice. Kidney International, 2018, 94, 326-345.	2.6	55
40	Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight, 2018, 3, .	2.3	14
41	Bowman's capsule provides a protective niche for podocytes from cytotoxic CD8+ T cells. Journal of Clinical Investigation, 2018, 128, 3413-3424.	3.9	62
42	Inhibition of Reticulon-1A–Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development. Journal of the American Society of Nephrology: JASN, 2017, 28, 2007-2021.	3.0	64
43	A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF- \hat{l}^2 1/Smad3 Pathway. Journal of the American Society of Nephrology: JASN, 2017, 28, 2133-2143.	3.0	43
44	The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy. Current Diabetes Reports, 2017, 17, 17.	1.7	74
45	FGF-Dependent, Context-Driven Role for FRS Adapters in the Early Telencephalon. Journal of Neuroscience, 2017, 37, 5690-5698.	1.7	10
46	Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. American Journal of Physiology - Renal Physiology, 2017, 313, F621-F628.	1.3	69
47	Rtn1a-Mediated Endoplasmic Reticulum Stress in Podocyte Injury and Diabetic Nephropathy. Scientific Reports, 2017, 7, 323.	1.6	37
48	Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Scientific Reports, 2017, 7, 14603.	1.6	40
49	Retinoic acid improves nephrotoxic serum–induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney International, 2017, 92, 1444-1457.	2.6	32
50	Reduced Krüppel-Like Factor 2 Aggravates Glomerular Endothelial Cell Injury and Kidney Disease in Mice with Unilateral Nephrectomy. American Journal of Pathology, 2016, 186, 2021-2031.	1.9	26
51	Role of C/EBP-α in Adriamycin-induced podocyte injury. Scientific Reports, 2016, 6, 33520.	1.6	16
52	Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy. American Journal of Physiology - Renal Physiology, 2016, 310, F409-F415.	1.3	27
53	Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes. Journal of the American Society of Nephrology: JASN, 2016, 27, 1006-1014.	3.0	37
54	Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression. PLoS ONE, 2016, 11, e0150001.	1.1	30

Kyung Lee

#	Article	IF	CITATIONS
55	HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease. Frontiers in Physiology, 2015, 6, 132.	1.3	21
56	RTN1 mediates progression of kidney disease by inducing ER stress. Nature Communications, 2015, 6, 7841.	5.8	80
57	Genetics and Epigenetics of Diabetic Nephropathy. Kidney Diseases (Basel, Switzerland), 2015, 1, 42-51.	1.2	24
58	BAMBI Elimination Enhances Alternative TGF-Î ² Signaling and Glomerular Dysfunction in Diabetic Mice. Diabetes, 2015, 64, 2220-2233.	0.3	50
59	Inactivation of Integrin- \hat{l}^21 Prevents the Development of Polycystic Kidney Disease after the Loss of Polycystin-1. Journal of the American Society of Nephrology: JASN, 2015, 26, 888-895.	3.0	57
60	Glomerular endothelial cell injury and cross talk in diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2015, 308, F287-F297.	1.3	200
61	The Role of SIRT1 in Diabetic Kidney Disease. Frontiers in Endocrinology, 2014, 5, 166.	1.5	63
62	Prostaglandin E ₂ mediates proliferation and chloride secretion in ADPKD cystic renal epithelia. American Journal of Physiology - Renal Physiology, 2012, 303, F1425-F1434.	1.3	21
63	Cilium, centrosome and cell cycle regulation in polycystic kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1263-1271.	1.8	35
64	Structural Basis of SNT PTB Domain Interactions with Distinct Neurotrophic Receptors. Molecular Cell, 2000, 6, 921-929.	4.5	98
65	Control of cytoskeletal architecture by thesrc-suppressed C kinase substrate, SSeCKS. Cytoskeleton, 1998, 41, 1-17.	4.4	77
66	Novel Recognition Motif on Fibroblast Growth Factor Receptor Mediates Direct Association and Activation of SNT Adapter Proteins. Journal of Biological Chemistry, 1998, 273, 17987-17990.	1.6	158
67	Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS., 1998, 41, 1.		3