
Bryan Strange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/706408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 2014, 15, 655-669.	4.9	1,268
2	Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 2002, 5, 277-283.	7.1	897
3	Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 2004, 7, 278-285.	7.1	488
4	Segregating the functions of human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4034-4039.	3.3	293
5	A fast pathway for fear in human amygdala. Nature Neuroscience, 2016, 19, 1041-1049.	7.1	276
6	Â-Adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11454-11458.	3.3	270
7	An emotion-induced retrograde amnesia in humans is amygdala- and Â-adrenergic-dependent. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13626-13631.	3.3	264
8	Information theory, novelty and hippocampal responses: unpredicted or unpredictable?. Neural Networks, 2005, 18, 225-230.	3.3	221
9	Dissociable Human Perirhinal, Hippocampal, and Parahippocampal Roles during Verbal Encoding. Journal of Neuroscience, 2002, 22, 523-528.	1.7	205
10	A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nature Communications, 2020, 11, 3364.	5.8	199
11	Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain, 2004, 127, 2419-2426.	3.7	196
12	An electroconvulsive therapy procedure impairs reconsolidation of episodic memories in humans. Nature Neuroscience, 2014, 17, 204-206.	7.1	155
13	Anterior Prefrontal Cortex Mediates Rule Learning in Humans. Cerebral Cortex, 2001, 11, 1040-1046.	1.6	121
14	Memory fMRI in left hippocampal sclerosis: Optimizing the approach to predicting postsurgical memory. Neurology, 2006, 66, 699-705.	1.5	117
15	Brain Mechanisms for Detecting Perceptual, Semantic, and Emotional Deviance. NeuroImage, 2000, 12, 425-433.	2.1	113
16	Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe. NeuroImage, 2003, 20, S112-S119.	2.1	111
17	Static Magnetic Field Stimulation over the Visual Cortex Increases Alpha Oscillations and Slows Visual Search in Humans. Journal of Neuroscience, 2015, 35, 9182-9193.	1.7	108
18	Adaptive anterior hippocampal responses to oddball stimuli. Hippocampus, 2001, 11, 690-698.	0.9	103

BRYAN STRANGE

#	Article	IF	CITATIONS
19	Prefrontal-Occipitoparietal Coupling Underlies Late Latency Human Neuronal Responses to Emotion. Journal of Neuroscience, 2011, 31, 17278-17286.	1.7	101
20	Noradrenergic neuromodulation of human attention for emotional and neutral stimuli. Psychopharmacology, 2008, 197, 127-136.	1.5	82
21	Deep brain stimulation: Imaging on a group level. NeuroImage, 2020, 219, 117018.	2.1	69
22	β-Adrenergic Blockade during Memory Retrieval in Humans Evokes a Sustained Reduction of Declarative Emotional Memory Enhancement. Journal of Neuroscience, 2010, 30, 3959-3963.	1.7	68
23	Dissociating intentional learning from relative novelty responses in the medial temporal lobe. NeuroImage, 2005, 25, 51-62.	2.1	66
24	Personalized striatal targets for deep brain stimulation in obsessive-compulsive disorder. Brain Stimulation, 2019, 12, 724-734.	0.7	66
25	Peak Frequency in the Theta and Alpha Bands Correlates with Human Working Memory Capacity. Frontiers in Human Neuroscience, 2010, 4, 200.	1.0	64
26	Unmasking selective path integration deficits in Alzheimer's disease risk carriers. Science Advances, 2020, 6, eaba1394.	4.7	55
27	How does the brain sustain a visual percept?. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 845-850.	1.2	45
28	Action boosts episodic memory encoding in humans via engagement of a noradrenergic system. Nature Communications, 2019, 10, 3534.	5.8	44
29	Static Magnetic Field Stimulation over Parietal Cortex Enhances Somatosensory Detection in Humans. Journal of Neuroscience, 2017, 37, 3840-3847.	1.7	43
30	Emotion Causes Targeted Forgetting of Established Memories. Frontiers in Behavioral Neuroscience, 2010, 4, 175.	1.0	42
31	Safety Study of Transcranial Static Magnetic Field Stimulation (tSMS) of the Human Cortex. Brain Stimulation, 2015, 8, 481-485.	0.7	41
32	A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biological Psychiatry, 2021, 90, 701-713.	0.7	41
33	Emotional arousal modulation of right temporoparietal cortex in depression depends on parental depression status in women: First evidence. Journal of Affective Disorders, 2015, 178, 79-87.	2.0	37
34	Anterior medial temporal lobe in human cognition: Memory for fear and the unexpected. Cognitive Neuropsychiatry, 2006, 11, 198-218.	0.7	36
35	β-adrenergic modulation of oddball responses in humans. Behavioral and Brain Functions, 2007, 3, 29.	1.4	32
36	Functional segregation within the human hippocampus. Molecular Psychiatry, 1999, 4, 508-511.	4.1	29

BRYAN STRANGE

#	Article	IF	CITATIONS
37	Temporal dynamics of amygdala response to emotion- and action-relevance. Scientific Reports, 2020, 10, 11138.	1.6	27
38	Transcranial static magnetic field stimulation (tSMS) of the visual cortex decreases experimental photophobia. Cephalalgia, 2018, 38, 1493-1497.	1.8	26
39	Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Science Advances, 2019, 5, eaav3801.	4.7	26
40	Dynamic gamma frequency feedback coupling between higher and lower order visual cortices underlies perceptual completion in humans. NeuroImage, 2014, 86, 470-479.	2.1	25
41	Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior. Communications Biology, 2019, 2, 397.	2.0	24
42	Emotion-Induced Retrograde Amnesia Is Determined by a 5-HTT Genetic Polymorphism. Journal of Neuroscience, 2008, 28, 7036-7039.	1.7	19
43	Aphasic seizures in patients with temporopolar and anterior temporobasal lesions: A video-EEG study. Epilepsy and Behavior, 2013, 29, 172-177.	0.9	16
44	Modulation of medial temporal lobe activity in epilepsy patients with hippocampal sclerosis during verbal working memory. Journal of the International Neuropsychological Society, 2009, 15, 536-546.	1.2	15
45	Dynamic risk control by human nucleus accumbens. Brain, 2015, 138, 3496-3502.	3.7	15
46	Human amygdala response to unisensory and multisensory emotion input: No evidence for superadditivity from intracranial recordings. Neuropsychologia, 2019, 131, 9-24.	0.7	12
47	Dopamine receptor 4 promoter polymorphism modulates memory and neuronal responses to salience. Neurolmage, 2014, 84, 922-931.	2.1	10
48	Alternative neural circuitry that might be impaired in the development of Alzheimer disease. Frontiers in Neuroscience, 2015, 9, 145.	1.4	7
49	A ventromedial prefrontal dysrhythmia in obsessive-compulsive disorder is attenuated by nucleus accumbens deep brain stimulation. Brain Stimulation, 2021, 14, 761-770.	0.7	7
50	Emotional memory in bipolar disorder: Impact of multiple episodes and childhood trauma. Journal of Affective Disorders, 2020, 260, 206-213.	2.0	6
51	Deep Brain Stimulation of the Nucleus Accumbens, Ventral Striatum, or Internal Capsule Targets for Medication-Resistant Obsessive-Compulsive Disorder: A Multicenter Study. World Neurosurgery, 2021, 155, e168-e176.	0.7	5
52	Further rare and unusual dementias. Advances in Psychiatric Treatment, 2012, 18, 67-77.	0.6	4
53	The multi-instrumentalist hippocampus. Physics of Life Reviews, 2015, 13, 85-86.	1.5	4
54	Orienting to fear under transient focal disruption of the human amygdala. Brain, 2023, 146, 135-148.	3.7	4

BRYAN STRANGE

#	Article	IF	CITATIONS
55	Quantitative Longitudinal Predictions of Alzheimer's Disease by Multi-Modal Predictive Learning. Journal of Alzheimer's Disease, 2021, 79, 1533-1546.	1.2	2
56	Static magnetic field stimulation over motor cortex modulates resting functional connectivity in humans. Scientific Reports, 2022, 12, 7834.	1.6	2
57	Bidirectional synaptic plasticity can explain bidirectional retrograde effects of emotion on memory. Behavioral and Brain Sciences, 2016, 39, e224.	0.4	1
58	Neuroanatomical signature of superâ€ageing: Structural brain study of youthful episodic memory in people over the age of 80. Alzheimer's and Dementia, 2020, 16, e041915.	0.4	1
59	Deep-brain stimulation of human nucleus accumbens dynamically alters risky decision-making. Brain Stimulation, 2015, 8, 390.	0.7	0
60	[P3–390]: WHITE MATTER LOSS IN THE HEALTHY ELDERLY BRAIN INDICATIVE OF IMPENDING COGNITIVE DECLINE. Alzheimer's and Dementia, 2017, 13, P1111.	0.4	0
61	Rare and Unusual Dementias. , 2020, , 50-77.		0
62	APOEâ€îµ4 and hippocampal volume in the cognitively healthy elderly: Longitudinal analysis reveals origins of apparent crossâ€sectional differences. Alzheimer's and Dementia, 2020, 16, e042680.	0.4	0
63	Nucleus Accumbens Stimulation Modulates Inhibitory Control by Right Prefrontal Cortex Activation in Obsessive-Compulsive Disorder. Cerebral Cortex, 2021, 31, 2742-2758.	1.6	0