List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063919/publications.pdf Version: 2024-02-01

Ниг Ми

#	Article	IF	CITATIONS
1	Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, UV Shielding, and Antioxidant Activity as Wearable Sensors. ACS Applied Polymer Materials, 2022, 4, 1448-1456.	4.4	26
2	Adhesive, Antibacterial, Conductive, Anti-UV, Self-Healing, and Tough Collagen-Based Hydrogels from a Pyrogallol-Ag Self-Catalysis System. ACS Applied Materials & Interfaces, 2022, 14, 8728-8742.	8.0	28
3	A Green Catechol-Containing Cellulose Nanofibrils-Cross-Linked Adhesive. ACS Biomaterials Science and Engineering, 2022, 8, 1096-1102.	5.2	18
4	Mussel-Inspired Magnetic Dissolving Pulp Fibers Toward the Adsorption and Degradation of Organic Dyes. Frontiers in Chemistry, 2022, 10, 840133.	3.6	2
5	Rapid fabrication of bionic pyrogallol-based self-adhesive hydrogel with mechanically tunable, self-healing, antibacterial, wound healing, and hemostatic properties. , 2022, 136, 212765.		10
6	Self-healing, reusable and conductive cellulose nanocrystals-containing adhesives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128797.	4.7	14
7	Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112509.	5.0	22
8	Metal-free photocatalyst for nitrogen fixation under visible light based on COF/g-C3N4/ CNT nanocomposite. Journal of Environmental Chemical Engineering, 2022, 10, 107713.	6.7	20
9	A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. Journal of Materials Chemistry A, 2022, 10, 12092-12103.	10.3	35
10	Super-ductile, injectable, fast self-healing collagen-based hydrogels with multi-responsive and accelerated wound-repair properties. Chemical Engineering Journal, 2021, 405, 126756.	12.7	49
11	Staining of wood veneers with anti-UV property using the natural dye extracted from Dalbergia cohinchinensis. Journal of Cleaner Production, 2021, 284, 124770.	9.3	20
12	A bioinspired gallol-functionalized collagen as wet-tissue adhesive for biomedical applications. Chemical Engineering Journal, 2021, 417, 127962.	12.7	37
13	Mussel-inspired biocompatible polydopamine/carboxymethyl cellulose/polyacrylic acid adhesive hydrogels with UV-shielding capacity. Cellulose, 2021, 28, 1527-1540.	4.9	57
14	Biocompatible Catecholâ€Functionalized Celluloseâ€Based Adhesives with Strong Water Resistance. Macromolecular Materials and Engineering, 2021, 306, 2100232.	3.6	19
15	Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chemical Engineering Journal, 2021, 414, 128726.	12.7	76
16	Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability. Carbohydrate Polymers, 2021, 264, 117995.	10.2	43
17	Tendon-inspired fibers from liquid crystalline collagen as the pre-oriented bioink. International Journal of Biological Macromolecules, 2021, 185, 739-749.	7.5	10
18	Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chemical Engineering Journal, 2021, 417, 129329.	12.7	157

#	Article	IF	CITATIONS
19	Nanocellulose-derived carbon/g-C3N4 heterojunction with a hybrid electron transfer pathway for highly photocatalytic hydrogen peroxide production. Journal of Colloid and Interface Science, 2021, 599, 507-518.	9.4	31
20	Mussel-Inspired Conductive Hydrogel with Self-Healing, Adhesive, and Antibacterial Properties for Wearable Monitoring. ACS Applied Polymer Materials, 2021, 3, 5798-5807.	4.4	40
21	Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. Journal of Materials Chemistry A, 2020, 8, 3109-3118.	10.3	158
22	Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination. International Journal of Biological Macromolecules, 2020, 144, 127-134.	7.5	68
23	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	10.3	53
24	Photochromic nanocellulose composite films with excellent anti-UV capacity. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	4
25	A self-healing, stretchable, and conductive Poly(N-vinylpyrrolidone)/gallic acid composite hydrogel formed via hydrogen bonding for wearable electronic sensors. Composites Science and Technology, 2020, 198, 108294.	7.8	69
26	Novel Modification of Collagen: Realizing Desired Water Solubility and Thermostability in a Conflict-Free Way. ACS Omega, 2020, 5, 5772-5780.	3.5	14
27	C-nanocoated ZnO by TEMPO-oxidized cellulose templating for improved photocatalytic performance. Carbohydrate Polymers, 2020, 235, 115958.	10.2	27
28	Superhydrophobic wood grafted by poly(2-(perfluorooctyl)ethyl methacrylate) via ATRP with self-cleaning, abrasion resistance and anti-mold properties. Holzforschung, 2020, 74, 799-809.	1.9	17
29	Analysis of bonding mechanism of glass fiber-reinforced bamboo plywood. BioResources, 2020, 15, 529-543.	1.0	2
30	Fabrication of highly concentrated collagens using cooled urea/HAc as novel binary solvent. Journal of Molecular Liquids, 2019, 291, 111304.	4.9	14
31	Dual-functionalized hyaluronic acid as a facile modifier to prepare polyanionic collagen. Carbohydrate Polymers, 2019, 215, 358-365.	10.2	15
32	Influence of water evaporation/absorption on the stability of glycerol–water marbles. RSC Advances, 2019, 9, 34465-34471.	3.6	19
33	Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(Î ³ -glutamic acid). International Journal of Biological Macromolecules, 2018, 112, 1156-1163.	7.5	14
34	Halloysite Nanotubes: Green Nanomaterial for Functional Organicâ€Inorganic Nanohybrids. Chemical Record, 2018, 18, 986-999.	5.8	68
35	Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation. Carbohydrate Polymers, 2018, 181, 419-425.	10.2	78
36	Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates. Progress in Polymer Science, 2018, 77, 95-117.	24.7	70

#	Article	IF	CITATIONS
37	Self-healing cellulose nanocrystal-stabilized droplets for water collection under oil. Soft Matter, 2018, 14, 9308-9311.	2.7	10
38	Self-Healing Cellulose Nanocrystals-Containing Gels via Reshuffling of Thiuram Disulfide Bonds. Polymers, 2018, 10, 1392.	4.5	36
39	Diallyl dimethyl ammonium chloride-grafted cellulose filter membrane via ATRP for selective removal of anionic dye. Cellulose, 2018, 25, 7261-7275.	4.9	38
40	Differential proteome analysis of the extracts from the xylem of Cinnamomum camphora inhibiting Coriolus versicolor. Holzforschung, 2018, 72, 459-466.	1.9	1
41	Orientation and crystallization of regioregular poly(3-dodecylthiophene) in alumina nanopores. Soft Matter, 2017, 13, 4661-4666.	2.7	11
42	Polymer Solar Cells Employing Water-Soluble Polypyrrole Nanoparticles as Dopants of PEDOT:PSS with Enhanced Efficiency and Stability. Journal of Physical Chemistry C, 2017, 121, 18378-18384.	3.1	29
43	TEMPO-Oxidized Cellulose with High Degree of Oxidation. Polymers, 2017, 9, 421.	4.5	123
44	Preparation and Characterization of Antibacterial Cellulose/Chitosan Nanofiltration Membranes. Polymers, 2017, 9, 116.	4.5	50
45	Liquid Marbles from Polymer Particles: Formation Mechanism, Physical Characterizations, and Applications. Kobunshi Ronbunshu, 2017, 74, 26-35.	0.2	3
46	A perspective on lignin effects on hemicelluloses dissolution for bamboo pretreatment. Industrial Crops and Products, 2016, 94, 117-121.	5.2	16
47	Decay resistance effects of Pinus massoniana treated with different preservatives based on pyrolysis and thermodynamics. Wood Science and Technology, 2016, 50, 105-116.	3.2	2
48	Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe ₃ O ₄ /cellulose microspheres for stable liquid marbles. Chemical Communications, 2016, 52, 1895-1898.	4.1	46
49	Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose, 2016, 23, 811-821.	4.9	64
50	Chain orientation in poly(glycolic acid)/halloysite nanotube hybrid electrospun fibers. Polymer, 2015, 60, 284-291.	3.8	40
51	Molecular reorientation of polyimide film induced by thermal nanoimprint lithography and liquid crystals alignment on it. Polymer, 2015, 72, 113-117.	3.8	7
52	Molecular self-assembly of nylon-12 nanorods cylindrically confined to nanoporous alumina. IUCrJ, 2014, 1, 439-445.	2.2	10
53	Ordered Organic Nanostructures Fabricated from Anodic Alumina Oxide Templates for Organic Bulkâ€Heterojunction Photovoltaics. Macromolecular Chemistry and Physics, 2014, 215, 584-596. ————————————————————————————————————	2.2	18
54	Direct Measurement of Chain Diffusion at Interfaces of PPO/PS Bilayer Films by Nano-Thermal Analysis and Time-of-Flight Secondary Ion Mass Spectrometry. Macromolecules, 2013, 46, 9722-9728.	4.8	7

#	Article	IF	CITATIONS
55	Structural effects of catechol-containing polystyrene gels based on a dual cross-linking approach. Soft Matter, 2013, 9, 1967-1974.	2.7	31
56	Grazing-incidence wide-angle X-ray diffraction study on molecular aggregation state of imprinted polyimide film before and after hard baking. Polymer Bulletin, 2013, 70, 105-115.	3.3	3
57	Confinement-Induced Crystal Growth in One-Dimensional Isotactic Polystyrene Nanorod Arrays. ACS Macro Letters, 2013, 2, 414-418.	4.8	24
58	Robust Liquid Marbles Stabilized with Surface-Modified Halloysite Nanotubes. Langmuir, 2013, 29, 14971-14975.	3.5	51
59	Internally Modified Halloysite Nanotubes as Inorganic Nanocontainers for a Flame Retardant. Chemistry Letters, 2013, 42, 121-123.	1.3	46
60	Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)- <i>block</i> -polystyrene Diblock Copolymer Thin Film. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	2
61	Characterization of an isotactic polystyrene/poly(2,6-dimethylphenylene oxide) nanorod blend with gradient composition and crystallinity. RSC Advances, 2012, 2, 8707.	3.6	12
62	Morphology of nanoimprinted polyimide films fabricated via a controlled thermal history. Polymer Journal, 2012, 44, 1036-1041.	2.7	5
63	Effects of Temperature and Template Surface on Crystallization of Syndiotactic Polystyrene in Cylindrical Nanopores. Macromolecules, 2012, 45, 5196-5200.	4.8	35
64	Competition between Oxidation and Coordination in Cross-Linking of Polystyrene Copolymer Containing Catechol Groups. ACS Macro Letters, 2012, 1, 457-460.	4.8	168
65	Isotactic polystyrene nanorods with gradient crystallite states. Soft Matter, 2012, 8, 3180.	2.7	32
66	A "non-sticky―superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acid on a hierarchically micro/nanostructured alumina gel film. Chemical Communications, 2012, 48, 6824.	4.1	54
67	Polystyrene-based blend nanorods with gradient composition distribution. Science China Chemistry, 2012, 55, 726-734.	8.2	7
68	Gradient composition distribution in poly(2,6-dimethylphenylene oxide)/polystyrene blend nanorods. Soft Matter, 2011, 7, 1868-1873.	2.7	16
69	Molecular composition distribution of polycarbonate/polystyrene blends in cylindrical nanopores. Polymer Journal, 2011, 43, 600-605.	2.7	12
70	Orientation of Syndiotactic Polystyrene Crystallized in Cylindrical Nanopores. Macromolecular Rapid Communications, 2009, 30, 194-198.	3.9	61
71	CRYSTALLIZATION AND ORIENTATION OF POLYETHELENE IN ANODIC ALUMINUM OXIDE TEMPLATES. Acta Polymerica Sinica, 2009, 009, 425-429.	0.0	10
72	Polymorphic Behavior of Syndiotactic Polystyrene Crystallized in Cylindrical Nanopores. Macromolecules, 2008, 41, 7755-7758.	4.8	50

#	Article	IF	CITATIONS
73	New Substituted Tetrathiafulvaleneâ^'Quinone Dyads: The Influences of Electron Accepting Abilities of Quinone Units on the Metal Ion-Promoted Electron-Transfer Processes. Journal of Organic Chemistry, 2008, 73, 4271-4274.	3.2	24
74	Crystallization and Orientation of Syndiotactic Polystyrene in Nanorods. Macromolecules, 2007, 40, 4244-4249.	4.8	91
75	Intramolecular Electron Transfer within the Substituted Tetrathiafulvaleneâ^'Quinone Dyads:Â Facilitated by Metal Ion and Photomodulation in the Presence of Spiropyran. Journal of the American Chemical Society, 2007, 129, 6839-6846.	13.7	95