Kathryn L Schwertfeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7063880/publications.pdf

Version: 2024-02-01

37 papers

2,933 citations

279487 23 h-index 315357 38 g-index

40 all docs 40 docs citations

times ranked

40

5489 citing authors

#	Article	lF	CITATIONS
1	Characterizing Macrophage Diversity in Metastasis-Bearing Lungs Reveals a Lipid-Associated Macrophage Subset. Cancer Research, 2021, 81, 5284-5295.	0.4	37
2	STAT5 is activated in macrophages by breast cancer cell-derived factors and regulates macrophage function in the tumor microenvironment. Breast Cancer Research, 2021, 23, 104.	2.2	16
3	Diverse Macrophage Populations Contribute to the Inflammatory Microenvironment in Premalignant Lesions During Localized Invasion. Frontiers in Oncology, 2020, 10, 569985.	1.3	18
4	Tumor Cell Associated Hyaluronan-CD44 Signaling Promotes Pro-Tumor Inflammation in Breast Cancers, 2020, 12, 1325.	1.7	21
5	Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. ELife, 2020, 9, .	2.8	63
6	JAK/STAT inhibition in macrophages promotes therapeutic resistance by inducing expression of protumorigenic factors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12442-12451.	3.3	50
7	Inflammation as a Target in Cancer Therapy. Mediators of Inflammation, 2019, 2019, 1-2.	1.4	11
8	Cancer Stem Cell Phenotypes in ER+ Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes. Molecular Cancer Research, 2018, 16, 707-719.	1.5	20
9	Breaking through to the Other Side: Microenvironment Contributions to DCIS Initiation and Progression. Journal of Mammary Gland Biology and Neoplasia, 2018, 23, 207-221.	1.0	51
10	Taxol Induces Brk-dependent Prosurvival Phenotypes in TNBC Cells through an AhR/GR/HIF–driven Signaling Axis. Molecular Cancer Research, 2018, 16, 1761-1772.	1.5	15
11	Distant Relations: Macrophage Functions in the Metastatic Niche. Trends in Cancer, 2018, 4, 445-459.	3.8	81
12	STAT5 deletion in macrophages alters ductal elongation and branching during mammary gland development. Developmental Biology, 2017, 428, 232-244.	0.9	20
13	Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs. Journal of Hematology and Oncology, 2017, 10, 89.	6.9	60
14	Breast cancer cell-derived fibroblast growth factors enhance osteoclast activity and contribute to the formation of metastatic lesions. PLoS ONE, 2017, 12, e0185736.	1.1	26
15	Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	61
16	ADAM17 in tumor associated leukocytes regulates inflammatory mediators and promotes mammary tumor formation. Genes and Cancer, 2016, 7, 240-253.	0.6	7
17	Triptolide enhances the tumoricidal activity of <scp>TRAIL</scp> against renal cell carcinoma. FEBS Journal, 2015, 282, 4747-4765.	2.2	15
18	Hyaluronan, Inflammation, and Breast Cancer Progression. Frontiers in Immunology, 2015, 6, 236.	2.2	164

#	Article	IF	CITATIONS
19	The Content and Size of Hyaluronan in Biological Fluids and Tissues. Frontiers in Immunology, 2015, 6, 261.	2.2	212
20	elF4E Threshold Levels Differ in Governing Normal and Neoplastic Expansion of Mammary Stem and Luminal Progenitor Cells. Cancer Research, 2015, 75, 687-697.	0.4	12
21	Epiregulin contributes to breast tumorigenesis through regulating matrix metalloproteinase 1 and promoting cell survival. Molecular Cancer, 2015, 14, 138.	7.9	24
22	Building Bridges toward Invasion: Tumor Promoter Treatment Induces a Novel Protein Kinase C-Dependent Phenotype in MCF10A Mammary Cell Acini. PLoS ONE, 2014, 9, e90722.	1.1	3
23	Activation of the FGFR–STAT3 Pathway in Breast Cancer Cells Induces a Hyaluronan-Rich Microenvironment That Licenses Tumor Formation. Cancer Research, 2014, 74, 374-386.	0.4	59
24	PVT1 dependence in cancer with MYC copy-number increase. Nature, 2014, 512, 82-86.	13.7	617
25	The FGF/FGF receptor axis as a therapeutic target in breast cancer. Expert Review of Endocrinology and Metabolism, 2013, 8, 391-402.	1.2	56
26	BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Developmental Biology, 2013, 373, 95-106.	0.9	30
27	Macrophages Promote Fibroblast Growth Factor Receptor-Driven Tumor Cell Migration and Invasion in a Cxcr2-Dependent Manner. Molecular Cancer Research, 2012, 10, 1294-1305.	1.5	85
28	Fibroblast Growth Factor Receptor 1 Activation in Mammary Tumor Cells Promotes Macrophage Recruitment in a CX3CL1-Dependent Manner. PLoS ONE, 2012, 7, e45877.	1.1	58
29	Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor. Journal of Cell Science, 2011, 124, 3106-3117.	1.2	23
30	Proinflammatory Cytokines in Breast Cancer: Mechanisms of Action and Potential Targets for Therapeutics. Current Drug Targets, 2010, 11, 1133-1146.	1.0	176
31	Immune Cell Location and Function During Post-Natal Mammary Gland Development. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 329-339.	1.0	58
32	Fibroblast Growth Factors in Development and Cancer: Insights from the Mammary and Prostate Glands. Current Drug Targets, 2009, 10, 632-644.	1.0	51
33	Mammary Gland Macrophages: Pleiotropic Functions in Mammary Development. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 229-238.	1.0	67
34	A Critical Role for the Inflammatory Response in a Mouse Model of Preneoplastic Progression. Cancer Research, 2006, 66, 5676-5685.	0.4	67
35	Pleiotropic effects of FGFR1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. Journal of Cell Biology, 2005, 171, 663-673.	2.3	139
36	Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. Journal of Lipid Research, 2003, 44, 1100-1112.	2.0	122

#	Article	lF	CITATIONS
37	An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 227-241.	1.0	334