Guozhen Shen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7063592/guozhen-shen-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

359 24,397 85 139 g-index

378 27,733 9.2 7.49 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
359	MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. <i>Nano Research</i> , 2022 , 15, 3653	10	22
358	Continuous Fabrication of TiCT MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with Improved Performance <i>Nano-Micro Letters</i> , 2021 , 14, 34	19.5	6
357	Recent advances of flexible sensors for biomedical applications. <i>Progress in Natural Science:</i> Materials International, 2021 ,	3.6	7
356	Integrated polarization-sensitive amplification system for digital information transmission. <i>Nature Communications</i> , 2021 , 12, 6476	17.4	10
355	Assessment of Occlusal Force and Local Gas Release Using Degradable Bacterial Cellulose/TiCT MXene Bioaerogel for Oral Healthcare. <i>ACS Nano</i> , 2021 ,	16.7	15
354	A perspective on flexible sensors in developing diagnostic devices. <i>Applied Physics Letters</i> , 2021 , 119, 150501	3.4	8
353	Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. <i>Advanced Science</i> , 2021 , e2103257	13.6	19
352	Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. <i>Nano Research</i> , 2021 , 14, 3379-3385	10	3
351	Flexible Image Sensors with Semiconducting Nanowires for Biomimic Visual Applications. <i>Small Structures</i> , 2021 , 2, 2000152	8.7	16
350	Flexible Self-Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene Thin-Films. <i>Advanced Materials</i> , 2021 , 33, e2007890	24	46
349	In-Situ Annealed TiCT MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. <i>Nano-Micro Letters</i> , 2021 , 13, 100	19.5	20
348	Short-Wave Near-Infrared Polarization Sensitive Photodetector Based on GaSb Nanowire. <i>IEEE Electron Device Letters</i> , 2021 , 42, 549-552	4.4	6
347	Low-Noise Dual-Band Polarimetric Image Sensor Based on 1D Bi S Nanowire. <i>Advanced Science</i> , 2021 , 8, e2100075	13.6	16
346	An Ultrasensitive Contact Lens Sensor Based On Self-Assembly Graphene For Continuous Intraocular Pressure Monitoring. <i>Advanced Functional Materials</i> , 2021 , 31, 2010991	15.6	9
345	Biocompatible MXene/Chitosan-Based Flexible Bimodal Devices for Real-Time Pulse and Respiratory Rate Monitoring 2021 , 3, 921-929		9
344	Artificial Optoelectronic Synapses Based on TiNxO2¼/MoS2 Heterojunction for Neuromorphic Computing and Visual System. <i>Advanced Functional Materials</i> , 2021 , 31, 2101201	15.6	22
343	Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100107	6.8	20

(2021-2021)

342	Recent advanced applications of ion-gel in ionic-gated transistor. Npj Flexible Electronics, 2021, 5,	10.7	10
341	Flexible Transparent Near-Infrared Photodetector Based on 2D Ti3C2 MXene-Te Van Der Waals Heterostructures Chinese Journal of Chemistry, 2021 , 39, 2141-2146	4.9	6
340	Near-Infrared Light Triggered Self-Powered Mechano-Optical Communication System using Wearable Photodetector Textile. <i>Advanced Functional Materials</i> , 2021 , 31, 2104782	15.6	25
339	Highly-stable polymer-crosslinked 2D MXene-based flexible biocompatible electronic skins for in vivo biomonitoring. <i>Nano Energy</i> , 2021 , 84, 105921	17.1	41
338	Micro-Nano Processing of Active Layers in Flexible Tactile Sensors via Template Methods: A Review. <i>Small</i> , 2021 , 17, e2100804	11	18
337	Oxidized Ti3C2T x film-based high-performance flexible pressure sensors. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 384002	3	1
336	Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasi-1D Sb2S3 Nanowire. <i>Advanced Functional Materials</i> , 2021 , 31, 2006601	15.6	16
335	Controlled Assembly of MXene Nanosheets as an Electrode and Active Layer for High-Performance Electronic Skin. <i>Advanced Functional Materials</i> , 2021 , 31, 2010533	15.6	66
334	Reliable sensors based on graphene textile with negative resistance variation in three dimensions. <i>Nano Research</i> , 2021 , 14, 2810-2818	10	2
333	Flexible Sensors Based on OrganicIhorganic Hybrid Materials. <i>Advanced Materials Technologies</i> , 2021 , 6, 2000889	6.8	10
332	Recent Advances in Perovskite Photodetectors for Image Sensing. Small, 2021, 17, e2005606	11	34
331	Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. <i>Advanced Functional Materials</i> , 2021 , 31, 2104288	15.6	21
330	Chitosan-Assisted Fabrication of a Network C@VO Cathode for High-Performance Zn-Ion Batteries. <i>ACS Applied Materials & Distributed & Di</i>	9.5	12
329	Ti C T MXene Conductive Layers Supported Bio-Derived Fe Se /MXene/Carbonaceous Nanoribbons for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries. <i>Advanced Materials</i> , 2021 , 33, e2101535	24	46
328	An artificial olfactory system with sensing, memory and self-protection capabilities. <i>Nano Energy</i> , 2021 , 86, 106078	17.1	10
327	Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. <i>Science Advances</i> , 2021 , 7, eabg3788	14.3	5
326	Wearable Sensors-Enabled Human Machine Interaction Systems: From Design to Application. <i>Advanced Functional Materials</i> , 2021 , 31, 2008936	15.6	79
325	Monolayer WS Lateral Homosuperlattices with Two-dimensional Periodic Localized Photoluminescence ACS Nano, 2021 ,	16.7	1

324	In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000269	6.4	14
323	An Electrically Modulated Single-Color/Dual-Color Imaging Photodetector. <i>Advanced Materials</i> , 2020 , 32, e1907257	24	67
322	A Self-Healable Bifunctional Electronic Skin. ACS Applied Materials & amp; Interfaces, 2020, 12, 24339-24	13 <u>4</u> .7	28
321	Growth of aligned SnS nanowire arrays for near infrared photodetectors. <i>Journal of Semiconductors</i> , 2020 , 41, 042602	2.3	5
320	Nanofiber/nanowires-based flexible and stretchable sensors. <i>Journal of Semiconductors</i> , 2020 , 41, 0416	50253	32
319	3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 32023-32030	9.5	34
318	Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. <i>Science China Materials</i> , 2020 , 63, 1171-1181	7.1	6
317	Threshold switching synaptic device with tactile memory function. <i>Nano Energy</i> , 2020 , 76, 105109	17.1	9
316	Bimetal Schottky Heterojunction Boosting Energy-Saving Hydrogen Production from Alkaline Water via Urea Electrocatalysis. <i>Advanced Functional Materials</i> , 2020 , 30, 2000556	15.6	98
315	An Integrated Flexible All-Nanowire Infrared Sensing System with Record Photosensitivity. <i>Advanced Materials</i> , 2020 , 32, e1908419	24	31
314	Single layers of MoS2/Graphene nanosheets embedded in activated carbon nanofibers for high-performance supercapacitor. <i>Journal of Alloys and Compounds</i> , 2020 , 829, 154557	5.7	23
313	Recent Advances of Two-Dimensional Nanomaterials for Electrochemical Capacitors. <i>ChemSusChem</i> , 2020 , 13, 1093-1113	8.3	17
312	Symmetry-Reduction Enhanced Polarization-Sensitive Photodetection in Core-Shell SbI /Sb O van der Waals Heterostructure. <i>Small</i> , 2020 , 16, e1907172	11	18
311	Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. <i>Energy Storage Materials</i> , 2020 , 27, 169-186	19.4	35
310	Flexible sliding sensor for simultaneous monitoring deformation and displacement on a robotic hand/arm. <i>Nano Energy</i> , 2020 , 73, 104764	17.1	26
309	Wearable supercapacitor self-charged by P(VDF-TrFE) piezoelectric separator. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 174-179	3.6	20
308	Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6388-6395	7.1	14
307	Biocompatible and Biodegradable Functional Polysaccharides for Flexible Humidity Sensors. <i>Research</i> , 2020 , 2020, 8716847	7.8	29

306	Recent progress and future prospects of sodium-ion capacitors. Science China Materials, 2020, 63, 185-2	2961	24
305	Self-catalyzed growth of GaSb nanowires for high performance ultraviolet-visible-near infrared photodetectors. <i>Science China Materials</i> , 2020 , 63, 383-391	7.1	7
304	Reviews of wearable healthcare systems: Materials, devices and system integration. <i>Materials Science and Engineering Reports</i> , 2020 , 140, 100523	30.9	107
303	Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. <i>Information Materily</i> , 2020 , 2, 291-317	23.1	54
302	Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. <i>Nano Energy</i> , 2020 , 78, 105252	17.1	74
301	All-Ti3C2TxMXene Based Flexible On-chip Microsupercapacitor Array. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 694-698	2.2	7
300	An integrated flexible multifunctional sensing system for simultaneous monitoring of environment signals. <i>Science China Materials</i> , 2020 , 63, 2560-2569	7.1	7
299	Flexible Short-Wave Infrared Image Sensors Enabled by High-Performance Polymeric Photodetectors. <i>Macromolecules</i> , 2020 , 53, 10636-10643	5.5	17
298	A Flexible Concentric Circle Structured Zinc-Ion Micro-Battery with Electrodeposited Electrodes. <i>Small Methods</i> , 2020 , 4, 2000363	12.8	14
297	Preface to the Special Issue on Flexible Materials and Structures for Bioengineering, Sensing, and Energy Applications. <i>Journal of Semiconductors</i> , 2020 , 41, 040101	2.3	1
296	2D Nanomaterials with Hierarchical Architecture for Flexible Sensor Application. <i>ACS Symposium Series</i> , 2020 , 93-116	0.4	2
295	Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications. <i>Advanced Materials</i> , 2020 , 32, e1901806	24	126
294	Recent progress of self-powered wearable monitoring systems integrated with microsupercapacitors. <i>Materials Today Nano</i> , 2019 , 8, 100050	9.7	17
293	Motion recognition by a liquid filled tubular triboelectric nanogenerator. <i>Nanoscale</i> , 2019 , 11, 495-503	7.7	10
292	Wearable sweat monitoring system with integrated micro-supercapacitors. <i>Nano Energy</i> , 2019 , 58, 624-	6 <u>8</u> 21	85
291	Electrospraying preparation of metal germanate nanospheres for high-performance lithium-ion batteries and room-temperature gas sensors. <i>Nanoscale</i> , 2019 , 11, 12116-12123	7.7	10
290	Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors. <i>Science China Materials</i> , 2019 , 62, 1139-1150	7.1	15
289	Highly flexible self-powered photodetectors based on coreBhell Sb/CdS nanowires. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 4581-4586	7.1	15

288	MoS-OH Bilayer-Mediated Growth of Inch-Sized Monolayer MoS on Arbitrary Substrates. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5392-5401	16.4	56
287	Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. <i>Information Materilly</i> , 2019 , 1, 85-97	23.1	32
286	Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. <i>Nano Today</i> , 2019 , 26, 176-198	17.9	44
285	Resonant and Selective Excitation of Photocatalytically Active Defect Sites in TiO. ACS Applied Materials & Interfaces, 2019, 11, 10351-10355	9.5	1
284	Bio-Multifunctional Smart Wearable Sensors for Medical Devices. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900040	6	58
283	Flexible Smart Noncontact Control Systems with Ultrasensitive Humidity Sensors. <i>Small</i> , 2019 , 15, e190)2 <u>8</u> 01	55
282	Mixed-Valence-Driven Quasi-1D SnIISnIVS3 with Highly Polarization-Sensitive UVIIis IIIR Photoresponse. <i>Advanced Functional Materials</i> , 2019 , 29, 1904416	15.6	22
281	Water-proof and thermally inert flexible pressure sensors based on zero temperature coefficient of resistance hybrid films. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9648-9654	7.1	16
280	Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors. <i>ACS Nano</i> , 2019 , 13, 9139-914	7 ^{16.7}	192
279	Metal-Organic-Framework-Derived MCo2O4 (M=Mn and Zn) Nanosheet Arrays on Carbon Cloth as Integrated Anodes for Energy Storage Applications. <i>ChemElectroChem</i> , 2019 , 6, 5836-5843	4.3	10
278	Al-Doping-Induced VO2 (B) Phase in VO2 (M) Toward Smart Optical Thin Films with Modulated IIvis and IIc. <i>Advanced Engineering Materials</i> , 2019 , 21, 1900947	3.5	8
277	Skin Adhesives with Controlled Adhesion by Polymer Chain Mobility. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 1496-1502	9.5	26
276	Grain-Boundary-Induced Drastic Sensing Performance Enhancement of Polycrystalline-Microwire Printed Gas Sensors. <i>Advanced Materials</i> , 2019 , 31, e1804583	24	92
275	Large-Scale Fabrication of Flexible On-Chip Micro-Supercapacitors by a Mechanical Scribing Process. <i>ChemElectroChem</i> , 2018 , 5, 1652-1657	4.3	6
274	Printable Zn2GeO4 Microwires Based Flexible Photodetectors with Tunable Photoresponses. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800050	6.8	10
273	Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. <i>Science China Materials</i> , 2018 , 61, 254-262	7.1	27
272	Recent Developments in Graphene-Based Tactile Sensors and E-Skins. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700248	6.8	100
271	Tellurophene-Based Random Copolymers for High Responsivity and Detectivity Photodetectors. <i>ACS Applied Materials & Detection (Compared Materials & Detection </i>	9.5	19

270	An Artificial Flexible Visual Memory System Based on an UV-Motivated Memristor. <i>Advanced Materials</i> , 2018 , 30, 1705400	24	189
269	Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. <i>Science China Materials</i> , 2018 , 61, 1587-1595	7.1	74
268	Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. <i>Nano Research</i> , 2018 , 11, 511-519	10	42
267	Fabrication of rigid and flexible SrGe4O9 nanotube-based sensors for room-temperature ammonia detection. <i>Nano Research</i> , 2018 , 11, 431-439	10	13
266	Longitudinal twinning <code>Hn2Se3</code> nanowires for UV-visible-NIR photodetectors with high sensitivity. <i>Frontiers of Optoelectronics</i> , 2018 , 11, 245-255	2.8	7
265	Hollow Polypyrrole Sleeve Based Coaxial Fiber Supercapacitors for Wearable Integrated Photosensing System. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800115	6.8	19
264	MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. <i>Nano Research</i> , 2018 , 11, 5866-5878	10	34
263	Recent progress and perspectives of metal oxides based on-chip microsupercapacitors. <i>Chinese Chemical Letters</i> , 2018 , 29, 553-563	8.1	11
262	Flexible Broadband Image Sensors with SnS Quantum Dots/Zn2SnO4 Nanowires Hybrid Nanostructures. <i>Advanced Functional Materials</i> , 2018 , 28, 1705389	15.6	49
261	Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small, 2018, 14, e17	0 <u>2</u> 829	158
260	Highly sensitive hybrid nanofiber-based room-temperature CO sensors: Experiments and density functional theory simulations. <i>Nano Research</i> , 2018 , 11, 1029-1037	10	32
259	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 180044	!€ .8	78
258	Plant-Based Modular Building Blocks for Green Electronic Skins. <i>Advanced Functional Materials</i> , 2018 , 28, 1804510	15.6	73
257	Device Configurations and Future Prospects of Flexible/Stretchable Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1805596	15.6	88
256	Highly Stretchable Micro-Supercapacitor Arrays with Hybrid MWCNT/PANI Electrodes. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600282	6.8	105
255	Au-nanoparticles-decorated Sb2S3 nanowire-based flexible ultraviolet/visible photodetectors. Journal of Materials Chemistry C, 2017 , 5, 3330-3335	7.1	33
254	Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. <i>Nano Energy</i> , 2017 , 38, 28-35	17.1	150
253	Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. <i>Sensors and Actuators B: Chemical</i> , 2017 , 252, 79-85	8.5	71

252	All rGO-on-PVDF-nanofibers based self-powered electronic skins. <i>Nano Energy</i> , 2017 , 35, 121-127	17.1	107
251	ZnO Quantum Dot Decorated ZnSnO Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors. <i>ACS Nano</i> , 2017 , 11, 4067-4076	16.7	145
250	Recent Progress of Self-Powered Sensing Systems for Wearable Electronics. <i>Small</i> , 2017 , 13, 1701791	11	141
249	Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. <i>Nano Energy</i> , 2017 , 41, 261-268	17.1	77
248	New insights and perspectives into biological materials for flexible electronics. <i>Chemical Society Reviews</i> , 2017 , 46, 6764-6815	58.5	245
247	Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance. <i>Nanoscale</i> , 2017 , 9, 15416-15422	7.7	13
246	Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 11288-11293	7.1	53
245	SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors. <i>RSC Advances</i> , 2017 , 7, 52503-57	2509	64
244	Nanowire-assembled Co3O4@NiCo2O4 architectures for high performance all-solid-state asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24981-24988	13	64
243	Polymer-Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600136	6.8	100
242	Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistors by Piezo-Phototronic Effect from GaN Nanowires. <i>ACS Nano</i> , 2016 , 10, 7451-7	16.7	67
241	High-Performance All-Polymer Photoresponse Devices Based on Acceptor Acceptor Conjugated Polymers. <i>Advanced Functional Materials</i> , 2016 , 26, 6306-6315	15.6	79
240	Facile construction of novel CoMoO4 microplates@CoMoO4 microprisms structures for well-stable supercapacitors. <i>Progress in Natural Science: Materials International</i> , 2016 , 26, 243-252	3.6	18
239	Highly flexible strain sensor based on ZnO nanowires and P(VDF-TrFE) fibers for wearable electronic device. <i>Science China Materials</i> , 2016 , 59, 173-181	7.1	33
238	Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. <i>Nano Today</i> , 2016 , 11, 82-97	17.9	64
237	Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries. <i>Nanoscale</i> , 2016 , 8, 8666-72	7.7	57
236	Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. <i>Nanoscale</i> , 2016 , 8, 5219-25	7.7	55
235	Flexible and free-standing ternary CdteOhanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance. <i>Nanotechnology</i> , 2016 , 27, 095602	3.4	11

(2015-2016)

234	Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. <i>Nano Research</i> , 2016 , 9, 424-434	10	85
233	An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. <i>Nano Energy</i> , 2016 , 23, 7-14	17.1	368
232	Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe/MoSivan der Waals Heterostructures. <i>ACS Nano</i> , 2016 , 10, 3852-8	16.7	314
231	Low-Temperature and Ultrafast Synthesis of Patternable Few-Layer Transition Metal Dichacogenides with Controllable Stacking Alignment by a Microwave-Assisted Selenization Process. <i>Chemistry of Materials</i> , 2016 , 28, 1147-1154	9.6	13
230	Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. <i>Nanoscale</i> , 2016 , 8, 14986-91	7.7	38
229	Transition from Diffusion-Controlled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS2 by Nanoscale Heterostructuring. <i>Advanced Energy Materials</i> , 2016 , 6, 1501115	21.8	133
228	Meters-Long Flexible CoNiO2-Nanowires@Carbon-Fibers Based Wire-Supercapacitors for Wearable Electronics. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600142	6.8	53
227	Wafer Scale Phase-Engineered 1T- and 2H-MoSe /Mo Core-Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2016 , 28, 9831-983	8 ²⁴	156
226	Photodetectors based on two dimensional materials. <i>Journal of Semiconductors</i> , 2016 , 37, 091001	2.3	21
225	Low-Temperature Chemical Synthesis of Three-Dimensional Hierarchical Ni(OH)2-Coated Ni Microflowers for High-Performance Enzyme-Free Glucose Sensor. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 25752-25759	3.8	18
224	Flexible Photodetectors Based on 1D Inorganic Nanostructures. Advanced Science, 2016 , 3, 1500287	13.6	94
223	Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions. <i>ACS Nano</i> , 2015 , 9, 2704-10	16.7	41
222	Ternary oxide nanostructured materials for supercapacitors: a review. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10158-10173	13	260
221	High-performance solar-blind ultraviolet photodetector based on electrospun TiO2-ZnTiO3 heterojunction nanowires. <i>Nano Research</i> , 2015 , 8, 2822-2832	10	39
220	A flexible integrated photodetector system driven by on-chip microsupercapacitors. <i>Nano Energy</i> , 2015 , 13, 131-139	17.1	81
219	Electrical transport and photoresponse properties of single-crystalline p-type Cd3As2 nanowires. <i>Science China: Physics, Mechanics and Astronomy</i> , 2015 , 58, 1-6	3.6	5
218	Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. <i>Nano Energy</i> , 2015 , 15, 104-115	17.1	230
217	InGaO3(ZnO) Superlattice Nanowires for High-Performance Ultraviolet Photodetectors. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500054	6.4	26

216	Hierarchical CdS Nanowires Based Rigid and Flexible Photodetectors with Ultrahigh Sensitivity. <i>ACS Applied Materials & Applied & Applie</i>	9.5	88
215	Rational Synthesis of Branched CoMoO4@CoNiO2 Core/Shell Nanowire Arrays for All-Solid-State Supercapacitors with Improved Performance. <i>ACS Applied Materials & District Action Section</i> , 7, 24204-11	9.5	70
214	Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. <i>Nano Research</i> , 2015 , 8, 3544-3552	10	45
213	Encapsulating Ca2Ge7O16 nanowires within graphene sheets as anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20673-20680	13	18
212	A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. <i>Nanoscale</i> , 2015 , 7, 1921-6	7.7	194
211	Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. <i>Nano Research</i> , 2015 , 8, 743-750	10	48
210	Flexible electronics based on inorganic nanowires. <i>Chemical Society Reviews</i> , 2015 , 44, 161-92	58.5	360
209	CuCo2O4 Nanowires Grown on a Ni Wire for High-Performance, Flexible Fiber Supercapacitors. <i>ChemElectroChem</i> , 2015 , 2, 1042-1047	4.3	80
208	High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. <i>Nano Research</i> , 2015 , 8, 2162-2169	10	70
207	Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p-n homojunctions by electrospinning. <i>Nanoscale</i> , 2015 , 7, 10513-8	7.7	31
206	Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. <i>Science Bulletin</i> , 2015 , 60, 101-108	10.6	35
205	Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. <i>Nanoscale</i> , 2015 , 7, 5046-52	7.7	59
204	Flexible fiber energy storage and integrated devices: recent progress and perspectives. <i>Materials Today</i> , 2015 , 18, 265-272	21.8	129
203	Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. <i>Nano Research</i> , 2014 , 7, 272-283	10	6
202	Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1849-53	16.4	360
201	CoreBhell CuCo2O4@MnO2 Nanowires on Carbon Fabrics as High-Performance Materials for Flexible, All-Solid-State, Electrochemical Capacitors. <i>ChemElectroChem</i> , 2014 , 1, 559-564	4.3	128
200	Three-Dimensional Structural Engineering for Energy-Storage Devices: From Microscope to Macroscope. <i>ChemElectroChem</i> , 2014 , 1, 975-1002	4.3	45
199	Memristor-integrated voltage-stabilizing supercapacitor system. <i>Advanced Materials</i> , 2014 , 26, 4999-50	0 <u>.4</u> 4	25

19	98	Si@SiO2 nanowires/carbon textiles cable-type anodes for high-capacity reversible lithium-ion batteries. <i>RSC Advances</i> , 2014 , 4, 18391	3.7	10
19	97	High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1270-1277	7.1	50
19	96	High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd(3)P(2) nanowire ultraviolet-visible-near infrared photodetectors. <i>ACS Nano</i> , 2014 , 8, 787-96	16.7	77
19	95	Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10917-10922	13	76
19	94	Constructing optimized wire electrodes for fiber supercapacitors. <i>Nano Energy</i> , 2014 , 10, 99-107	17.1	54
19	93	Integrated smart electrochromic windows for energy saving and storage applications. <i>Chemical Communications</i> , 2014 , 50, 608-10	5.8	145
19	92	Flexible TiO2/cellulose acetate hybrid film as a recyclable photocatalyst. <i>RSC Advances</i> , 2014 , 4, 12640	3.7	42
19	91	SnO2@TiO2 Heterojunction Nanostructures for Lithium-Ion Batteries and Self-Powered UV Photodetectors with Improved Performances. <i>ChemElectroChem</i> , 2014 , 1, 108-115	4.3	91
19	90	Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. <i>Nano Research</i> , 2014 , 7, 1073-1082	10	89
18	89	Flexible photodetectors with single-crystalline GaTe nanowires. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6104-6110	7.1	32
18	88	Flexible energy-storage devices: design consideration and recent progress. <i>Advanced Materials</i> , 2014 , 26, 4763-82	24	979
18	87	Integrated Photo-supercapacitor Based on Bi-polar TiO2 Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation. <i>Advanced Functional Materials</i> , 2014 , 24, 1840-1846	15.6	140
18	86	Hierarchical MnCo2O4 nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. <i>Nanoscale</i> , 2014 , 6, 8858-64	7.7	110
18	85	Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. <i>Nano Energy</i> , 2014 , 8, 44-51	17.1	212
18	84	Fiber-Based Flexible All-Solid-State Asymmetric Supercapacitors for Integrated Photodetecting System. <i>Angewandte Chemie</i> , 2014 , 126, 1880-1884	3.6	112
18	83	Tin Microspheres Grown on Carbon Cloth as Binder-Free Integrated Anode for High Capacity Lithium Storage. <i>Energy Technology</i> , 2014 , 2, 370-375	3.5	10
18	82	Spray-painted binder-free SnSe electrodes for high-performance energy-storage devices. <i>ChemSusChem</i> , 2014 , 7, 308-13	8.3	68
18	81	Flexible organic-inorganic hybrid photodetectors with n-type phenyl-C61-butyric acid methyl ester (PCBM) and p-type pearl-like GaP nanowires. <i>Nano Research</i> , 2014 , 7, 1777-1787	10	17

180	Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano, 2013, 7, 8051-8	16.7	196
179	Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. <i>Energy and Environmental Science</i> , 2013 , 6, 2965	35.4	67
178	Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. <i>Nano Research</i> , 2013 , 6, 525-534	10	103
177	SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. <i>Nanoscale</i> , 2013 , 5, 7831-7	7.7	83
176	Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes. <i>Chemistry - A European Journal</i> , 2013 , 19, 8650-6	4.8	48
175	Single-crystalline metal germanate nanowire-carbon textiles as binder-free, self-supported anodes for high-performance lithium storage. <i>Nanoscale</i> , 2013 , 5, 10291-9	7.7	52
174	High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. <i>Nano Research</i> , 2013 , 6, 775-783	10	100
173	New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors. <i>ACS Applied Materials & District Action Section</i> , 5, 10011-7	9.5	310
172	Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2139-2143	13	79
171	Contact printing of horizontally aligned Zn2GeO4 and In2Ge2O7 nanowire arrays for multi-channel field-effect transistors and their photoresponse performances. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 131-137	7.1	32
170	TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. <i>Scientific Reports</i> , 2013 , 3, 2007	4.9	117
169	Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect. <i>Small</i> , 2013 , 9, 1998-2004	11	122
168	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7167	13	172
167	Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. <i>Scientific Reports</i> , 2013 , 3, 1622	4.9	126
166	NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2468	13	317
165	ZnS Nanostructures: Synthesis, Properties, and Applications. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2013 , 38, 57-90	10.1	78
164	Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 1479-86	24	209
163	Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. <i>Nanoscale</i> , 2013 , 5, 7041-5	7.7	85

(2012-2013)

162	Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. <i>ACS Nano</i> , 2013 , 7, 5453-62	16.7	560
161	Laterally emitted surface second harmonic generation in a single ZnTe nanowire. <i>Nano Letters</i> , 2013 , 13, 4224-9	11.5	46
160	Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. <i>Optics Express</i> , 2013 , 21, 7799-810	3.3	46
159	Selective synthesis of Sb2S3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors. <i>Optics Express</i> , 2013 , 21, 13639-47	3.3	42
158	Structural engineering for high energy and voltage output supercapacitors. <i>Chemistry - A European Journal</i> , 2013 , 19, 6451-8	4.8	18
157	Contact printing of horizontally-aligned p-type Zn P [hanowire arrays for rigid and flexible photodetectors. <i>Nanotechnology</i> , 2013 , 24, 095703	3.4	21
156	High-Performance Organic-Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates. <i>Advanced Functional Materials</i> , 2013 , 23, 1202-1209	15.6	193
155	Two-photon pumped lasing in a single CdS microwire. <i>Applied Physics Letters</i> , 2013 , 102, 211915	3.4	19
154	Single-Crystalline p-Type Zn3As2 Nanowires for Field-Effect Transistors and Visible-Light Photodetectors on Rigid and Flexible Substrates. <i>Advanced Functional Materials</i> , 2013 , 23, 2681-2690	15.6	68
153	High-Mobility Solution-Processed Amorphous Indium Zinc \$hbox{Oxide/In}_{2}hbox{O}_{3}\$ Nanocrystal Hybrid Thin-Film Transistor. <i>IEEE Electron Device Letters</i> , 2013 , 34, 72-74	4.4	20
152	High-performance photodetectors, photocatalysts, and gas sensors based on polyol reflux synthesized porous ZnO nanosheets. <i>CrystEngComm</i> , 2012 , 14, 4582	3.3	41
151	Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21647		286
150	Shape evolution and applications in water purification: the case of CVD-grown Zn2SiO4 straw-bundles. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5330		29
149	Gas sensors, thermistor and photodetector based on ZnS nanowires. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6845		118
148	Metal oxide nanowire transistors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13428		42
147	Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties. <i>Nanotechnology</i> , 2012 , 23, 105502	3.4	88
146	Multilayer TiO2 nanorod cloth/nanorod array electrode for dye-sensitized solar cells and self-powered UV detectors. <i>Nanoscale</i> , 2012 , 4, 3350-8	7.7	52
145	ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 2012 , 22, 9379		66

144	Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23541		128
143	Fast fabrication of a WO3IPH2O thin film with improved electrochromic properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19904		63
142	Visible-light-driven photocatalytic and photoelectrochemical properties of porous SnSx(x = 1,2) architectures. <i>CrystEngComm</i> , 2012 , 14, 3163	3.3	98
141	Transparent metal oxide nanowire transistors. <i>Nanoscale</i> , 2012 , 4, 3001-12	7.7	37
140	Porous SnO2 nanoflowers derived from tin sulfide precursors as high performance gas sensors. CrystEngComm, 2012, 14, 6654	3.3	30
139	Hierarchical three-dimensional ZnCoDIhanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. <i>Nano Letters</i> , 2012 , 12, 3005-11	11.5	898
138	Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. <i>Optics Express</i> , 2012 , 20, 2982-91	3.3	86
137	Enhanced anisotropy of the nonlinear absorption in the individual Au nanoparticles functionalized KNbO3 sub-microwire. <i>Optics Express</i> , 2012 , 20, 24209-17	3.3	3
136	Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment. <i>CrystEngComm</i> , 2012 , 14, 3063	3.3	45
135	Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. <i>ACS Applied Materials & ACS Applied & </i>	9.5	114
134	Transferable and flexible nanorod-assembled TiOltloths for dye-sensitized solar cells, photodetectors, and photocatalysts. <i>ACS Nano</i> , 2011 , 5, 8412-9	16.7	193
133	Zinc-oleate complex as efficient precursor for 1-D ZnO nanostructures: synthesis and properties. <i>CrystEngComm</i> , 2011 , 13, 2629	3.3	34
132	Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. <i>ACS Nano</i> , 2011 , 5, 6148-55	16.7	89
131	Indium oxide nanospirals made of kinked nanowires. <i>ACS Nano</i> , 2011 , 5, 2155-61	16.7	50
130	One-dimensional iron oxides nanostructures. <i>Science China: Physics, Mechanics and Astronomy</i> , 2011 , 54, 1190-1199	3.6	14
129	Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications. <i>Advanced Materials</i> , 2011 , 23, 771-5	24	88
128	Electric transport, reversible wettability and chemical sensing of single-crystalline zigzag Zn2SnO4 nanowires. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17236		36
127	Controlled synthesis of monodispersed hematite microcubes and their properties. <i>CrystEngComm</i> , 2011 , 13, 7114	3.3	28

126	Self-organized hierarchical zinc phosphide nanoribbon/inc sulfide nanowire heterostructures. <i>CrystEngComm</i> , 2011 , 13, 7305	3.3	7
125	High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. Journal of Materials Chemistry, 2011 , 21, 12852		124
124	Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. Journal of Materials Chemistry, 2011 , 21, 19086		49
123	Porous WO3 with enhanced photocatalytic and selective gas sensing properties. <i>CrystEngComm</i> , 2011 , 13, 6393	3.3	41
122	One-dimensional nanostructures for photodetectors. Recent Patents on Nanotechnology, 2010 , 4, 20-31	1.2	44
121	Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. <i>ACS Nano</i> , 2010 , 4, 4403-11	16.7	650
120	Solution Growth and Cathodoluminescence of Novel SnO2 CoreBhell Homogeneous Microspheres. Journal of Physical Chemistry C, 2010 , 114, 8235-8240	3.8	43
119	Versatile Route to the Controlled Synthesis of Multilevel Branched Silicon Submicrometer/Nanostructures. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 134-138	3.8	5
118	Transparent Silver-Nanoparticles/Nanorods-Decorated Zinc Oxide Nanowires. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21088-21093	3.8	17
117	Fast-heating-vapor-trapping method to aligned indium oxide bi-crystalline nanobelts arrays and their electronic properties. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10888		20
116	Microstructure and photoluminescence studies of Sb-doped SnO2 zigzag nanobelts. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6629-33	1.3	4
115	One-dimensional nanostructures for electronic and optoelectronic devices. <i>Frontiers of Optoelectronics in China</i> , 2010 , 3, 125-138		21
114	Fully transparent flexible transistors built on metal oxide nanowires. <i>Frontiers of Optoelectronics in China</i> , 2010 , 3, 217-227		4
113	One-Dimensional Nanostructures and Devices of II-V Group Semiconductors. <i>Nanoscale Research Letters</i> , 2009 , 4, 779-788	5	31
112	Large scale synthesis of fishbone-like ZnS nanostructures using ITO glass as the substrate. <i>Journal of Alloys and Compounds</i> , 2009 , 482, L32-L35	5.7	17
111	Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process. <i>Journal of Alloys and Compounds</i> , 2009 , 486, L13-L16	5.7	37
110	Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. <i>ACS Nano</i> , 2009 , 3, 1115-20	16.7	99
109	Devices and chemical sensing applications of metal oxide nanowires. <i>Journal of Materials Chemistry</i> , 2009 , 19, 828-839		272

108	Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. <i>ACS Nano</i> , 2009 , 3, 73-9	16.7	251
107	Fabrication of Mesoporous CdTe/[email[protected]2 Core/Shell Nanostructures with Tunable Dual Emission and Ultrasensitive Fluorescence Response to Metal Ions. <i>Chemistry of Materials</i> , 2009 , 21, 68-7	. 9 .6	75
106	Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. <i>Applied Physics Letters</i> , 2009 , 94, 043113	3.4	162
105	High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. <i>ACS Nano</i> , 2009 , 3, 3383-90	16.7	82
104	Fabrication of core/shell Ge/SiO2 and Ge/CdS nanospheres. <i>Journal of Nanoscience and Nanotechnology</i> , 2009 , 9, 572-6	1.3	2
103	Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties. <i>Nanoscale Research Letters</i> , 2009 , 5, 570-5	5	62
102	1-D Hetero-Nanostructures: From Growth to Devices. <i>Science of Advanced Materials</i> , 2009 , 1, 213-226	2.3	24
101	Chemical Sensors and Electronic Noses Based on 1-D Metal Oxide Nanostructures. <i>IEEE Nanotechnology Magazine</i> , 2008 , 7, 668-682	2.6	124
100	Pearl-Like ZnS-Decorated InP Nanowire Heterostructures and Their Electric Behaviors. <i>Chemistry of Materials</i> , 2008 , 20, 6779-6783	9.6	42
99	Heteroepitaxial Growth of Orientation-Ordered ZnS Nanowire Arrays. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12299-12303	3.8	22
98	One-Step Thermo-Chemical Synthetic Method for Nanoscale One-Dimensional Heterostructures. <i>Chemistry of Materials</i> , 2008 , 20, 3788-3790	9.6	13
97	Bicrystalline Zn3P2 and Cd3P2 Nanobelts and Their Electronic Transport Properties. <i>Chemistry of Materials</i> , 2008 , 20, 7319-7323	9.6	34
96	Electron-Beam-Induced Synthesis and Characterization of W18O49 Nanowires. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 5856-5859	3.8	18
95	Single-Crystalline and Twinned Zn3P2 Nanowires: Synthesis, Characterization, and Electronic Properties. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16405-16410	3.8	35
94	Fabrication and characterization of metal oxide nanowire sensors. <i>Recent Patents on Nanotechnology</i> , 2008 , 2, 160-8	1.2	23
93	ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. <i>Journal of Materials Science</i> , 2008 , 43, 1460-1470	4.3	25
92	p-Type field-effect transistors of single-crystal zinc telluride nanobelts. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9469-71	16.4	40
91	Si nanowire semisphere-like ensembles as field emitters. <i>Chemical Communications</i> , 2007 , 4093-5	5.8	39

(2006-2007)

90	InP-GaP Bi-Coaxial Nanowires and Amorphous GaP Nanotubes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 3665-3668	3.8	12
89	Fabrication of Coaxial Zn/ZnS Core/Shell Fibers on a Large Scale. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5673-5676	3.8	6
88	Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 12673-12676	3.8	112
87	Synthesis and Structures of High-Quality Single-Crystalline II3\(\mathbb{I}\)2Semiconductors Nanobelts. Journal of Physical Chemistry C, 2007 , 111, 5044-5049	3.8	29
86	Self-Assembled Hierarchical Single-Crystalline	3.5	70
85	DonorAcceptor Nanoensembles Based on Boron Nitride Nanotubes. Advanced Materials, 2007, 19, 934-	9 <u>3</u> .8	22
84	Ultrafine ZnS Nanobelts as Field Emitters. Advanced Materials, 2007, 19, 2593-2596	24	218
83	Boron nitride nanotubes: nanoparticles functionalization and junction fabrication. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 530-4	1.3	16
82	Structure and cathodoluminescence of hierarchical Zn3P2InS nanotube/nanowire heterostructures. <i>Applied Physics Letters</i> , 2007 , 90, 073115	3.4	16
81	Recent developments in single-crystal inorganic nanotubes synthesised from removable templates. <i>International Journal of Nanotechnology</i> , 2007 , 4, 730	1.5	23
80	Shape- and Size-controlled Growth of ZnS Nanostructures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8469-8474	3.8	70
79	High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays. <i>Applied Physics Letters</i> , 2007 , 90, 123101	3.4	69
78	Self-assembled ZnO 3D flowerlike nanostructures. <i>Materials Letters</i> , 2006 , 60, 2530-2533	3.3	58
77	Systematic investigation of the formation of 1D alpha-Si(3)N(4) nanostructures by using a thermal-decomposition/nitridation process. <i>Chemistry - A European Journal</i> , 2006 , 12, 2987-93	4.8	43
76	Formation of crystalline SrAl(2)O(4) nanotubes by a roll-up and post-annealing approach. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4922-6	16.4	37
75	Single-crystal nanotubes of II3-V2 semiconductors. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 7568-72	16.4	74
74	Single-Crystal Nanotubes of II3 1/2 Semiconductors. <i>Angewandte Chemie</i> , 2006 , 118, 7730-7734	3.6	8
73	Characterization and Field-Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process. <i>Advanced Functional Materials</i> , 2006 , 16, 410-416	15.6	231

72	Single-crystalline cubic structured InP nanosprings. <i>Applied Physics Letters</i> , 2006 , 88, 243106	3.4	34
71	Wurtzite-type faceted single-crystalline GaN nanotubes. <i>Applied Physics Letters</i> , 2006 , 88, 093120	3.4	40
7º	Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. <i>Journal of the American Chemical Society</i> , 2006 , 128, 11762-3	16.4	124
69	Thickness-dependent photocatalytic performance of ZnO nanoplatelets. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15146-51	3.4	286
68	Synthesis, characterization and field-emission properties of bamboo-like beta-SiC nanowires. <i>Nanotechnology</i> , 2006 , 17, 3468-72	3.4	139
67	Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10714-9	3.4	15
66	Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23170-4	3.4	17
65	Self-organized hierarchical ZnS/SiO(2) nanowire heterostructures. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7199-202	3.4	49
64	Unconventional zigzag indium phosphide single-crystalline and twinned nanowires. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 20129-32	3.4	38
63	Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces. Journal of Physical Chemistry B, 2006 , 110, 15689-93	3.4	94
62	Carbon-coated single-crystalline zinc sulfide nanowires. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 2077	7 <u>7</u> -840	28
61	Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3973-8	3.4	51
60	Synthesis and interface structures of zinc sulfide sheathed zinc-cadmium nanowire heterojunctions. Journal of Physical Chemistry B, 2006 , 110, 14123-7	3.4	14
59	Self-assembled three-dimensional structures of single-crystalline ZnS submicrotubes formed by coalescence of ZnS nanowires. <i>Applied Physics Letters</i> , 2006 , 88, 123107	3.4	67
58	Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9294-8	3.4	103
57	Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005 , 109, 10578-83	3.4	173
56	Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10779-85	3.4	88
55	Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 5491-6	3.4	154

(2003-2005)

54	CdS Multipod-Based Structures through a Thermal Evaporation Process. <i>Crystal Growth and Design</i> , 2005 , 5, 1085-1089	3.5	87
53	Morphology-controlled synthesis, growth mechanism and optical properties of ZnO nanonails. <i>Chemical Physics Letters</i> , 2005 , 401, 414-419	2.5	67
52	Synthesis and characterization of S-doped ZnO nanowires produced by a simple solution-conversion process. <i>Chemical Physics Letters</i> , 2005 , 401, 529-533	2.5	57
51	Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. <i>Chemical Physics Letters</i> , 2005 , 404, 69-73	2.5	98
50	High-yield solvo-thermal synthesis of carbon nanotubes from sp3 hydrocarbons. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 523-526	2.6	2
49	Self-sacrificing template route to novel patterns of radially aligned Bi2(Se,S)3nanorods and Bi2Se3flakes. <i>Nanotechnology</i> , 2004 , 15, 1530-1534	3.4	19
48	Polyol-mediated preparation of disklike (ZnSe)2ŒN precursor and its conversion to ZnSe crystals with quasi-network structure. <i>Journal of Materials Research</i> , 2004 , 19, 1369-1373	2.5	5
47	A rapid route for the synthesis of submicron Se and Te rod-like crystals. <i>Materials Research Bulletin</i> , 2004 , 39, 2077-2082	5.1	5
46	Microwave-assisted polyol synthesis of nanoscale SnSx (x=1, 2) flakes. <i>Journal of Crystal Growth</i> , 2004 , 260, 469-474	1.6	81
45	Synthesis of ZrC hollow nanospheres at low temperature. <i>Journal of Crystal Growth</i> , 2004 , 262, 277-280	0 1.6	29
44	Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route. <i>Journal of Crystal Growth</i> , 2004 , 263, 232-236	1.6	47
43	AOT-Microemulsions-Based Formation and Evolution of PbWO4 Crystals. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 11280-11284	3.4	102
42	Assembly of carbide nanostructures at low temperature. <i>International Journal of Nanotechnology</i> , 2004 , 1, 366	1.5	6
41	A Low-temperature in situ Template Reduction-Carbonization Route to TiC Submicrometer Hollow Spheres and Nanorods. <i>Chemistry Letters</i> , 2003 , 32, 116-117	1.7	9
40	Rapid Synthesis of SnSe Nanowires via an Ethylenediamine-assisted Polyol Route. <i>Chemistry Letters</i> , 2003 , 32, 426-427	1.7	18
39	Synthesis of Silver Selenide Dendritic Crystals via Glycothermal Route. <i>Chemistry Letters</i> , 2003 , 32, 210	-2 <u>1</u> 1. †	4
38	Aligned SnS2 nanotubes fabricated via a template-assisted solvent-relief process. <i>Applied Physics A: Materials Science and Processing</i> , 2003 , 77, 747-749	2.6	27
37	Low-temperature synthesis of metal tungstates nanocrystallites in ethylene glycol. <i>Materials Research Bulletin</i> , 2003 , 38, 1783-1789	5.1	58

36	Microwave-assisted synthesis of metal sulfides in ethylene glycol. <i>Materials Chemistry and Physics</i> , 2003 , 82, 206-209	4.4	98
35	Polyol mediated synthesis of nanocrystalline M3SbS3 (M=Ag, Cu). <i>Materials Research Bulletin</i> , 2003 , 38, 509-513	5.1	10
34	The synthesis and characterization of nanocrystalline Cu- and Ag-based multinary sulfide semiconductors. <i>Materials Research Bulletin</i> , 2003 , 38, 823-830	5.1	32
33	Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process. <i>Chemical Physics Letters</i> , 2003 , 370, 334-337	2.5	71
32	Silicon carbide hollow nanospheres, nanowires and coaxial nanowires. <i>Chemical Physics Letters</i> , 2003 , 375, 177-184	2.5	110
31	Large-scale synthesis of (Bi(Bi2S3)9I3)0.667 submicrometer needle-like crystals via a novel polyol route. <i>Journal of Crystal Growth</i> , 2003 , 249, 331-334	1.6	11
30	Novel polyol route to AgBiS2 nanorods. <i>Journal of Crystal Growth</i> , 2003 , 252, 199-201	1.6	44
29	A rapid ethylenediamine-assisted polyol route to synthesize Sb2E3 (E=S, Se) nanowires. <i>Journal of Crystal Growth</i> , 2003 , 252, 350-354	1.6	24
28	The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route. <i>Journal of Crystal Growth</i> , 2003 , 253, 512-516	1.6	32
27	Polyol-mediated synthesis of porous nanocrystalline CuInS2 foam. <i>Journal of Crystal Growth</i> , 2003 , 254, 75-79	1.6	31
26	Large-scale synthesis of CuO shuttle-like crystals via a convenient hydrothermal decomposition route. <i>Journal of Crystal Growth</i> , 2003 , 254, 225-228	1.6	110
25	Characterization of ZnSe spheres via a rapid polyol process. <i>Journal of Crystal Growth</i> , 2003 , 257, 276-27	79 .6	13
24	Phase-controlled synthesis and characterization of nickel sulfides nanorods. <i>Journal of Solid State Chemistry</i> , 2003 , 173, 227-231	3.3	39
23	General synthesis of metal sulfides nanocrystallines via a simple polyol route. <i>Journal of Solid State Chemistry</i> , 2003 , 173, 232-235	3.3	36
22	Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 181-184	3.1	22
21	Novel polyol route to nanoscale tin sulfides flaky crystallines. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 178-180	3.1	35
20	Microwave synthesis of AgBiS2 dendrites in aqueous solution. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 710-712	3.1	39
19	Synthesis of ternary sulfides Cu(Ag) B iB coral-shaped crystals from single-source precursors. Journal of Crystal Growth, 2003 , 257, 293-296	1.6	28

18	A simple route to prepare nanocrystalline titanium carbonitride. <i>Materials Research Bulletin</i> , 2002 , 37, 1207-1211	5.1	31	
17	Characterization of LiNbO3 nanocrystals prepared via a convenient hydrothermal route. <i>Materials Research Bulletin</i> , 2002 , 37, 1791-1796	5.1	51	
16	Growth of belt-like SnS crystals from ethylenediamine solution. <i>Journal of Crystal Growth</i> , 2002 , 244, 333-338	1.6	58	
15	Low-temperature synthesis and characterization of 和a2S3 nanorods. <i>Journal of Crystal Growth</i> , 2002 , 245, 304-308	1.6	12	
14	Blue-light emission of nanocrystalline CaS and SrS synthesized via a solvothermal route. <i>Chemical Physics Letters</i> , 2002 , 351, 385-390	2.5	34	
13	Hydrothermal preparation of luminescent PbWO4 nanocrystallites. <i>Materials Letters</i> , 2002 , 57, 565-568	3.3	37	
12	Synthesis of CuS Millimeter-Scale Tubular Crystals. <i>Chemistry Letters</i> , 2001 , 30, 494-495	1.7	26	
11	Characterization of PbSnS3 Nanorods Prepared via an Iodine Transport Hydrothermal Method. Journal of Solid State Chemistry, 2001 , 160, 50-53	3.3	13	
10	Synthesis of SnS2 nanocrystals via a solvothermal process. <i>Journal of Crystal Growth</i> , 2001 , 225, 92-95	1.6	51	
9	Template-assisted synthesis of Sb8O10(OH)2I2 tubular crystals under hydrothermal conditions. Journal of Crystal Growth, 2001 , 233, 287-291	1.6	5	
8	The synthesis of SbSI rodlike crystals with studded pyramids. <i>Journal of Crystal Growth</i> , 2001 , 233, 774-	77.86	14	
7	Low-Dimensional Nanostructure Based Flexible Photodetectors: Device Configuration, Functional Design, Integration, and Applications. <i>Accounts of Materials Research</i> ,	7.5	3	
6	Hierarchical Sb2S3/SnS2/C heterostructure with improved performance for sodium-ion batteries. <i>Science China Materials</i> ,1	7.1	1	
5	Ti 3 C 2 T x MXene-RAN van der Waals Heterostructure-Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application. <i>Advanced Materials Technologies</i> ,210163	3 9 .8	3	
4	All-Flexible Artificial Reflex Arc Based on Threshold-Switching Memristor. <i>Advanced Functional Materials</i> ,2200241	15.6	4	
3	Air-Stabilized Lead-Free Hexagonal Cs 3 Bi 2 I 9 Nanocrystals for Ultrahigh-Performance Optical Detection. <i>Advanced Functional Materials</i> ,2203072	15.6	4	
2	Perception-to-cognition Tactile Sensing Based on Artificial intelligence-motivated Human full-skin Bionic Electronic Skin. <i>Advanced Materials</i> ,2202622	24	16	
1	Flexible Artificial Optoelectronic Synapse based on Lead-Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition. <i>Advanced Science</i> ,2202123	13.6	4	